Determinación de regímenes de incendios y sequías usando información satelital y meteorológica para Córdoba, Argentina

Contenido principal del artículo

Sofía Sanchez
Mariano Grilli
Marcos Karlin
Romina Fachinetti
Andrés Ravelo

Resumen

El clima de la provincia de Córdoba ofrece,anualmente, condiciones predisponentes para la ocurrencia de incendios. Se analizó y modeló el impacto de la sequía mensual y las condiciones de humedad precedente en la actividad de los incendios para las principales ecorregiones del centro del país, a partir del índice de severidad de sequía de Palmer (PDSI).Se creó un mapa de frecuencia de incendios para el período 2001-2020 a partir del producto de área quemada MCD64A1 de MODIS. Se observó una relación estadísticamente significativa entre los incendios y las sequías de la misma temporada, mientras que las condiciones climáticas precedentes jugaron un papel relativamente menor, según la región. Laregión serrana fue la más afectada en términos de superficie quemada y la frecuencia de incendios varió entre una y seis veces. Además, los modelos aquí presentadosestimaron una respuesta positiva de la ocurrencia de incendios ante condiciones de mayor humedad en el año anterior. La región Bañados del Río Dulce obtuvo la mayor ocurrencia y frecuencia de incendios, con sitios que se quemaron hasta 11 veces. Los modelos presentados para lasecorregiones individuales son prometedores para desarrollar un sistema de pronóstico estacional que respalde las estrategias de manejo de incendios.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Sanchez, S., Grilli, M., Karlin, M. ., Fachinetti, R., & Ravelo, A. . (2022). Determinación de regímenes de incendios y sequías usando información satelital y meteorológica para Córdoba, Argentina. AgriScientia, 39(1), 1–13. https://doi.org/10.31047/1668.298x.v39.n1.33798
Sección
Artículos

Citas

Abatzoglou, J. T.and Kolden, C. A. (2013). Relationships between climate and macroscale area burned in the western United States. International Journal of Wildly Fire, 22(7), 1003–1020. https://doi.org/10.1071/WF13019

Abatzoglou, J. T., Kolden, C. A., Williams, A. P., Lutz, J. A.and Smith, A. M. S. (2017). Climatic influences on interannual variability in regional burn severity across western US forests. International Journal of Wildly Fire, 26(4), 269–275. https://doi.org/10.1071/WF16165

Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. and Kolden, C. A. (2018). Global patterns of interannual climate–fire relationships. Global Change Biology, 24(11), 5164-5175. https://doi.org/10.1111/gcb.14405

Akaike, H. (1976). Canonical correlation analysis of time series and the use of an information criterion. In R.K. Mehra and D.G. Lainiotis (Eds.),Mathematics in Science and Engineering(Vol. 126, 27-96).Elsevier.

Aldersley, A., Murray, S. J.and Cornell, S. E. (2011). Global y regional analysis of climate and human drivers of wildfire. Science of The Total Environment, 409(18), 3472–3481. https://doi.org/10.1016/j.scitotenv.2011.05.032

Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L.and Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6442–6447. https://doi.org/10.1073/pnas.1211466110

Archibald, S., Nickless, A., Govender, N., Scholes, R. J. and Lehsten, V. (2010). Climate and the inter-annual variability of fire in southern Africa: a meta-analysis using long-term field data y satellite-derived burnt area data. Global Ecology y Biogeography, 19(6), 794–809. https://doi.org/10.1111/j.1466-8238.2010.00568.x

Argañaraz, J. P. (2016). Dinámica espacial del fuego en las Sierras de Córdoba. Tesis de doctorado publicada(Repositorio Digital UNC).Universidad Nacional de Córdoba, Córdoba, Argentina.

Argañaraz, J. P., Cingolani, A. M., Bellis, L. M.and Giorgis, M. A. (2020). Fire incidence along an elevation gradient in the mountains of central Argentina. Ecologia Austral, 30(2), 268–281. https://doi.org/10.25260/ea.20.30.2.0.1054

Argañaraz, J. P., Landi, M. A., Bravo, S. J., Gavier-Pizarro, G. I., Scavuzzo, C. M.and Bellis, L. M. (2016). Estimation of Live Fuel Moisture Content From MODIS Images for Fire Danger Assessment in Southern Gran Chaco. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(12), 5339–5349. https://doi.org/10.1109/JSTARS.2016.2575366

Argañaraz, J. P., Gavier-Pizarro, G., Zak, M. y Bellis, L. M. (2015). Fire Regime, Climate, andVegetation in the Sierras de Córdoba, Argentina. Fire Ecology, 11(1), 55–73. https://doi.org/10.4996/fireecology.1101055

Bond, W. J.and Keeley, J. E. (2005). Fire as a global “herbivore”: the ecology y evolution of flammable ecosystems. Trends in Ecology and Evolution, 20(7), 387–394. https://doi.org/10.1016/j.tree.2005.04.025

Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A,, D’Antonio, C. M., Defries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M., Kull, C. A., Mack, M., Moritz, M.A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S. and Swetnam, T. W.(2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223–2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x

Bravo, S., Kunst, C., Gimenez, A. and Moglia, G. (2001). Fire regime of a Elionorus muticus Spreng. savanna, western Chaco region, Argentina. International Journal of Wildly Fire, 10(1), 65–72.https://doi.org/10.1071/WF01014

Bravo, S., Kunst, C., Grau, R. and Aráoz, E. (2010). Fire-rainfall relationships in Argentine Chaco savannas. Journal of Arid Environments, 74(10), 1319–1323. https://doi.org/10.1016/j.jaridenv.2010.04.010

Bucher, E.H., Gavier Pizarro, G. y Curto, E.E. (2006). Cap. 1: Síntesis geográfica. En E. H. Bucher (Ed.), Bañados del Rio Dulce y Laguna Mar Chiquita (Córdoba, Argentina)(15-27). Academia Nacional de Ciencias.

Cabido, D., Cabido, M., Garré, S. M., Gorgas, J. A., Miatello, R., Ravelo, A., Rambaldi, S., Tassile, J. L., Abril, E., Acuña, H., Arguello, L., Báez, S., Bárbaro, N.O., Burkat, R., Cantero, J.J., Cantú, M., Cisneros, J.M., Coirini, R.O., Herrero, M.,…Zanor,G. (2003). Regiones naturales de la Provincia de Córdoba. Publicaciones Técnicas: Agencia Córdoba D.A.C.y T.

Cabrera, A. L. (1976). Regiones fitogeográficas argentinas.En W.F. Kugler(Ed.), Enciclopedia Argentina de Agricultura y Jardinería(1-85). Acme.

Capitanelli, J. (1979). Clima. En J. Vázquez, R. Miatello y M. Roqué (Eds.), Geografía Física de la Provincia de Córdoba (213-296).Boldt.

Collins, B. M., Omi, P. N.and Chapman, P. L. (2006). Regional relationships between climate y wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research, 36(3), 699–709. https://doi.org/10.1139/x05-264

Dracup, J. A., Lee, K. S. and Paulson, E. G. (1980). On the definition of droughts. Water Resources Research Washington, 16(2), 297–302.https://doi.org/10.1029/WR016i002p00297

Environmental Systems Research Institute (ESRI)(2013). ArcGIS (versión 10.2) [Software].Redlands, CA, USA: Environmental Systems Research Institute, Inc.

Elcano, G. y Vicario, L. (2020). Evaluación de sequías hidrológicas en los tributarios de la cuenca alta del río Suquía, provincia de Córdoba. Informe interno. Instituto Nacional del Agua, Centro de la Región Semiárida (INA-CIRSA). https://www.ina.gov.ar/cirsa/pdf/Actualizacion_Evaluacion_sequias_hidrologicas_tributarios_dique_San_Roque.pdf

Fischer, M. A., Di Bella, C. M.and Jobbágy, E. G. (2012). Fire patterns in central semiarid Argentina. Journal of Arid Environments,78, 161–168.https://doi.org/10.1016/j.jaridenv.2011.11.009

García, C. L. (2013). Utilización de información satelital y terrestre para el manejo integrado del recurso hídrico de una cuenca serrana en la Provincia de Córdoba, Argentina.Tesis de doctorado publicada (Repositorio Digital UNC). Universidad Nacional de Córdoba, Córdoba, Argentina. https://rdu.unc.edu.ar/bitstream/handle/11086/1659/Garc%EDa%20-%20UTILIZACI%D3N%20DE%20INFORMACI%D3N%20SATELITAL..%20.pdf?sequence=1

Giglio, L., Loboda, T., Roy, D. P., Quayle, B. and Justice, C. O. (2009). An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 113(2), 408–420. https://doi.org/10.1016/j.rse.2008.10.006

Giglio, L., Schroeder, W. and Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm y fire products. Remote Sensing of Environment, 178, 31–41. http://dx.doi.org/10.1016/j.rse.2016.02.054

Giglio, L., Boschetti, L., Roy, D. P, Humber, M. L. and Justice, C. O. (2018). The Collection 6 MODIS burned area mapping algorithm y product. Remote Sensing of Environment, 217, 72–85. https://doi.org/10.1016/j.rse.2018.08.005

Giorgis, M.A., Cingolani, A. M. y Cabido, M. (2013). El efecto del fuego y las características topográficas sobre la vegetación y las propiedades del suelo en la zona de transición entre bosques y pastizales de las sierras de Córdoba, Argentina.Boletín de la Sociedad Argentina de Botánica, 48(3-4), 493–513.https://doi.org/10.31055/1851.2372.v48.n3-4.7555

Giorgis, M.A., Lopez, M., Rivero, D. y Cingolani, A. M. (2015). Cambios climáticos en las sierras de Córdoba (Argentina) durante el holoceno. Aportes a las reconstrucciones climáticas a través del análisis de silicofitolitos del sitio arqueológico El Alto 3.Boletín de la Sociedad Argentina de Botánica, 50(3), 361-375.https://doi.org/10.31055/1851.2372.v50.n3.12526

Giorgis, M. A., Cingolani, A., Gurvich, D., Tecco, P., Chiapella, J., Chiarini, F. and Cabido, M. (2017). Changes in floristic composition y physiognomy are decoupled along elevation gradients in central Argentina. Applied Vegetation Science, 20(4), 558–571.https://doi.org/10.1111/avsc.12324

Grau, H. and Veblen, T. (2000). Rainfall variability, fire y vegetation dynamics in neotropical montane ecosystems in north-western Argentina. Journal of Biogeography, 27(5), 1107–1121. https://doi.org/10.1046/j.1365-2699.2000.00488.x

Hall, J. V., Loboda, T. V., Giglio, L. and McCarty, G. W. (2016). A MODIS-based burned area assessment for Russian croplys: Mapping requirements y challenges. Remote Sensing of Environment, 184, 506–521. https://doi.org/10.1016/j.rse.2016.07.022

Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J. W., Warren, D. A., Parsons, R. and Affleck, D. (2018). Decreasing fire season precipitation increased recent western US forest wildfire activity. Proceedings of the National Academy of Sciences, 115(36), E8349–E8357. https://doi.org/10.1073/PNAS.1802316115

Karlin, M. S. (2013). Cambio climático en zonas semiáridas: El caso Chaco Árido. Editorial Académica Española.

Karlin, M. S., Karlin, U. O., Coirini, R. O., Reati, G. J. y Zapata, R. M. (2013). El Chaco Árido. Encuentro Grupo Editor.

Keeley, J. E. (2004). Impact of antecedent climate on fire regimes in coastal California. International Journal of Wildland Fire, 13(2), 173-182.https://doi.org/10.1071/WF03037

Keyantash, J. and Dracup, J. A. (2002). The Quantification of Drought: An Evaluation of Drought Indices. Bulletin of theAmerican Meteorological Society, 83(8), 1167–1180.https://doi.org/10.1175/1520-0477-83.8.1167

Krawchuk, M. A.and Moritz, M. A. (2011). Constraints on global fire activity vary across a resource gradient. Ecology, 92(1), 121–132. https://doi.org/10.1890/09-1843.1

Kunst, C. (2011). Ecología y uso del fuego en la región chaqueña Argentina.Boletín del CIDEU, 10, 81-105.http://rabida.uhu.es/dspace/handle/10272/5521

Kunst, C., Bravo, S., Moscovich, F., Herrera, J., Godoy, J. y Vélez, S. (2003). Fecha de aplicación de fuego y diversidad de herbáceas en una sabana de Elionorus muticus (Spreng) O. Kuntze. Revista Chilena de Historia Natural, 76(1), 105–115. https://doi.org/10.4067/s0716-078x2003000100010

Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y. and Luce, C. H. (2016). A review of the relationships between drought y forest fire in the United States. Global change biology, 22(7), 2353–2369. https://doi.org/10.1111/gcb.13275

Luti, R., Bertrán de Solís, M. A., Galera, M. F., Müller de Ferreira, N., Alday, A., Nores, M., Herrera, M. A. y Barrera, J. C. (1979). Vegetación. En J.B. Vázquez, R.A. Miatello y M.E. Roqué (Eds.), Geografía física de la provincia de Córdoba (297–368). Boldt.

Marinelli, M.V., Bustos Revol, S., Viotto, S., Clemente, J.P., Benitez, J., Mari, N., Scavuzzo, C.M. y Argañaraz, J.P.(2019). Elaboración de la base de datos de incendios 1987-2018 para las Sierras de Córdoba mediante imágenes Landsat. IV Congreso Nacional de Ciencia y Tecnología Ambiental. Florencio Varela, Buenos Aires, Argentina.

Mayr, M. J., Vanselow, K. A. and Samimi, C. (2018). Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecological Indicators, 91, 324–337. https://doi.org/10.1016/j.ecolind.2018.04.022

Miglietta, S. (1994). Patrón de ocurrencia de incendios y su efecto sobre la vegetación en el Bosque Serrano de Córdoba. Tesis de maestría no publicada.Universidad Nacional de Córdoba, Córdoba, Argentina.

Morello, J. H., Protomastro, J.; Sancholuz, L. y Blanco, C. (1985). Estudio macroecológico de los Llanos de La Rioja. Serie del Cincuentenario de la Administración de Parques Nacionales, 5, 1-53.

Morello, J. H., Matteucci, S., Rodriguez, A. y Silva, M. (2012). Ecorregiones y Complejos Ecosistémicos Argentinos. Orientación Gráfica Editora.

Oyarzabal, M., Clavijo, J., Oakley, L., Biganzoli, F., Tognetti, P., Barberis, I., Maturo, H. M., Aragón, R., Campanello, P. I., Prado, D., Oesterheld, M. y León, R. J. C. (2018). Unidades de vegetación de la Argentina. Ecología Austral, 28(1), 040–063. https://doi.org/10.25260/ea.18.28.1.0.399

Palmer, W. (1965). Meteorological drought, research paper n° 45. U.S. Department of Commerce, Weather Bureau.

Pausas, J. and Keeley, J. (2009). A Burning Story: The Role of Fire in the History of Life. BioScience, 59(7), 593–601. https://doi.org/10.1525/bio.2009.59.7.10

Pausas, J. and Keeley, J. (2014). Abrupt Climate-Independent Fire Regime Changes. Ecosystems, 17(6), 1109–1120. https://doi.org/10.1007/s10021-014-9773-5

Pausas, J. and Keeley, J. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 17(5), 289–295. https://doi.org/10.1002/fee.2044

Preisler, H. K. and Westerling, A. L. (2007). Statistical Model for Forecasting Monthly Large Wildfire Events in Western United States. Journal of Applied Meteorology and Climatology, 46(7), 1020–1030. https://doi.org/10.1175/JAM2513.1

RCore Team. (2019). R: A Language and Environment for Statistical Computing (versión 3.6.1) [Software].Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/

Ravelo, A. C., Zanvettor, R. E. y Boletta, P. E. (2014). Atlas de Sequías de la República Argentina. Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN).https://www.crean.unc.edu.ar/atlas-de-sequias-2/

Ravelo, A. C., Planchuelo, A., Zanvettor, R. E. y Boletta, P. E. (2016). Sistema de monitoreo y evaluación de las sequías en Argentina. Agrometeoros, 24(1). https://doi.org/10.31062/agrom.v24i1.24886

Sayago, M. (1969). Estudio fitogeográfico del norte de Córdoba. Boletín de la Academia Nacional de Ciencias, 46,123-247.

Tálamo, A. and Caziani, S. (2003). Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. Forest ecology and management, 184(1–3), 79–92.

Turco, M., Von Hardenberg, J., AghaKouchak, A., Llasat, M. C., Provenzale, A. and Trigo, R. M. (2017). On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-00116-9

Van Der Werf, G., Ryerson, J., Giglio, L., Gobron, N. and Dolman, A. (2008). Climate controls on the variability of fires in the tropics y subtropics. Global Biogeochemical Cycles, 22(3), 1–13. https://doi.org/10.1029/2007GB003122

Vicario, L. (2018). Evaluación de sequías hidrometeorológicas en la estación San Roque, perteneciente a una cuenca serrana de la provincia de Córdoba. Informe interno. Instituto Nacional del Agua, Centro de la Región Semiárida (INA-CIRSA).https://www.ina.gov.ar/cirsa/index.php?seccion=4

Westerling, A., Gershunov, A., Brown, T., Cayan, D. and Dettinger, M. (2003). Climate and wildfire in the western United States. Bulletin of the American Meteorological Society, 84(5), 595-604. https://doi.org/10.1175/BAMS-84-5-595

Westerling, A., Hidalgo, H., Cayan, D. and Swetnam, T. (2006). Warming and earlier spring increase Western U.S. forest wildfire activity. Science, 313(5789), 940–943. https://doi.org/10.1126/science.1128834

Xiao, J. and Zhuang, Q. (2007). Drought effects on large fire activity in Canadian and Alaskan forests. Environmental Research Letters, 2(4). https://doi.org/10.1088/1748-9326/2/4/044003

Zanvettor, R.E. (2020). Detección, evaluación y pronósticode sequías y excesos hídricos en Argentina. Tesis de doctorado no publicada. Universidad Nacional de Córdoba, Córdoba, Argentina.

Zanvettor, R. E., Ravelo, A. C., Thomasz, E. O. y Sánchez, S. S. (2017). Evaluación agroclimática y económica de los efectos adversos de excesos hídricos en la región pampeana argentina. Revista Argentina de Agrometeorología,8, 1–13.https://www.siteaada.org/_files/ugd/cf1a17_733bf1638c604c148ef874dff8ddb00f.pdf

Zhu, C., Kobayashi, H., Kanaya, Y. and Saito, M. (2017). Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplys. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-03739-0