Effect of direct seeding on phosphorus adsorption processes in the Mollisols of the center-north of the province of Córdoba (Argentina)

Main Article Content

A. A. Rollan
O. A. Bachmeier
M. M. Silva Rosi
M. A. Moreno

Abstract

Under the hypothesis that the stratification of soil properties under direct
seeding conditions (SD) modifies P sorption parameters, the objectives of this work were: i) to estimate P sorption parameters by using Langmuir isotherms in samples of different depth, extracted from fields under continuous direct seeding; (ii) to analyze the similarities and differences between the parameters obtained; and (iii) to identify the relationship between the edaphic properties of the surface stratum and the estimated parameters. Soil samples of 0 to 5 and 0 to 20 cm were equilibrated with  solutions with increasing concentrations of P. From the relationship between the adsorbed P and the concentration of P in equilibrium, the maximum adsorption capacity (Qmax) and the retention affinity constant (k) were estimated. The higher Qmax and the low k of 0 to 5 cm samples show that there is a distinct behaviour in the first centimeters of depth. In that layer the bioavailability of P and the residuality of the applied fertilizers are regulated by adsorption phenomena responding to the  presence of organic colloids, which are accumulated by the stratification associated with SD.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rollan, A. A., Bachmeier, O. A., Silva Rosi, M. M., & Moreno, M. A. (2017). Effect of direct seeding on phosphorus adsorption processes in the Mollisols of the center-north of the province of Córdoba (Argentina). AgriScientia, 34(2), 1–11. https://doi.org/10.31047/1668.298x.v34.n2.19036
Section
Articles

References

Afif-Khouri, E. y Oliveira, J. A. (2007). Agronomic efficiency of three phosphorus sources on grass turf under controlled conditions. Pastos, XXXVIII(1),45-63.

Al Salama, Y. J. (2008). Added Behavior of Different Phosphorus to Soil types Deir Ezzor Governorate, in Syria. Tishreen University Journal for Scientific Research and Studies. Biological Sciences Series, 30(5), 193-201.

Álvarez, C. R., Costantini, A. O., Bono, A., Taboada, M. A., Gutierrez-Boem, F. H., Fernández, P. L., y Prystupa, P. (2011). Distribution and vertical stratification of carbon and nitrogen in soil under different managements in the Pampean Region of Argentina. Revista Brasileira de Ciencia do Solo, 35,1985-1994.

Álvaro Fuentes, A. J., López Sánchez, M. V., Cantero-Martínez, C., y Arrúe Ugarte, J. L. (2008). Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Science Society of America Journal, 72(2), 541-547.

Brand-Klibanski, S., Liator, M. I., y Shenker, M. (2007). Overestimation of phosphorus adsorption capacity in reduced soils: An artifact of typical adsorption experiments. Soil Science Society of America Journal, 71,1128-1136.

Bravo, I., Montoya, J. C., y Menjivar, J. C. (2013). Retención y disponibilidad de fósforo asociado a la materia orgánica en un Typic Melanudands del departamento del Cauca, Colombia Acta Agronómica, 62(3), 261- 267.

Calviño, P., Echeverria, H. E., y Redolatti, M. (2000). Estratificación de fósforo en el suelo y diagnóstico de la fertilización fosfatada en trigo en siembra directa. XVII Congreso Argentino Ciencia del Suelo. Mar del Plata, Buenos Aires, Argentina. Actas en CD.

Carreira, J. A., Viñegla, B., y Lajtha, K. (2006). Secondary CaCO3 and precipitation of P-Ca compounds control the retention of soil P in arid ecosystems. Journal of Arid Environments, 64(3), 460-473.

Chien, S. H. (2007). Análisis del suelo para la aplicación de las rocas fosfóricas. En Zapata F. y Roy, F. N. (Eds.). Utilización de las rocas fosfóricas para una agricultura sostenible, Capítulo 6, p. 63-72. Roma, FAO.

Chimdi, A., Gebrekidan, H., Tadesse, A. y Kibret, K. (2013). Phosphorus Sorption Patterns of Soils from Different Land Use Systems of East Wollega, Ethiopia. American-Eurasian Journal of Scientific Research, 8(3), 109-116.

Ciampitti, I. A., Picone, L. I., Rubio, G., y García, F. O. (2011). Pathways of Phosphorous Fraction Dynamics in Field Crop Rotations of the Pampas of Argentina. Soil Science Society of America Journal, 75, 918-926.

Costa, A. R., Silva, J., Lopes Kern, M., Ruivo, C. D., Pinheiro, M. de L. y Marichal, R. (2017). Forms of soil organic phosphorus at black earth sites in the Eastern Amazon. Revista Ciência Agronômica, 48(1), 1-12.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G, González, L., Tablada, M., y Robledo, C. W. (2013). InfoStat, versión 2013, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Recuperado el 18/12/2016 de http://www.infostat.com.ar

Eriksson, A. K. (2016). Phosphorus speciation in Swedish agricultural clay soils. Influence of fertilization and mineralogy. Doctoral Thesis. Swedish University of Agricultural Sciences, Uppsala. Recuperado de: https://pub.epsilon.slu.se/13057/1/eriksson_ak_160212.pdf

Fernández López, C., y Mendoza, R. (2013). Added phosphorus availability and re-distribution in both natural and cultivated vertisols. Ciencia del Suelo, 31(2), 143-152.

Füleky, G. y Tolner, L. (2006). Determination of the phosphate content originally adsorbed on the soil by fitting an adsorption isotherm model. Applied Ecology and Environmental Research, 4(2), 39-45.

Ghida Daza, C. y Sánchez, C. (2009). Zonas Agroeconómicas Homogéneas: Córdoba. Estudios socioeconómicos de la sustentabilidad de los sistemas de producción y recursos naturales N°10. Ciudad Autónoma de Buenos Aires: Ediciones INTA.

Gordon-Mendoza, R., Franco-Barrera, J. E., Villarreal-Núñez, J. E., y Smith, T. J. (2016). Manejo de la fertilización fosforada en el cultivo de maíz, el Ejido, Panamá 2004-2013. Agronomía Mesoaméricana, 27(1), 95-108.

Haggard, B. E. y Sharpley, A. N. (2006). Phosphorus transport in streams: Processes and modeling considerations. En Radcliffe, D. E. y Cabrera, M.L. (Eds.), Modeling phosphorus in the environment. Boca Raton, FL.: CRC Press, p. 105-130.

Hiradate, S. y Uchida, N. (2004). Effects of soil organic matter on pH-dependent phosphate sorption by soils, Soil Science and Plant Nutrition, 50(5), 665-675.

Instituto Nacional de Tecnología Agropecuaria (2006). Recursos naturales de la provincia de Córdoba. Los suelos, nivel de reconocimiento 1:500.000. Córdoba, Argentina: Agencia Córdoba Ambiente-Instituto Nacional de Tecnología Agropecuaria.

Kruse, J. M., Abraham, M., Amelung, W., Baum, C., Bol R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Spohn, M., Vestergren, J., Vogts, A., y Leinweber, P. (2015). Innovative methods in soil phosphorus research: A review. Journal of Plant Nutrition and Soil Science, 178, 43-88.

Martínez, H. E., Fuentes, J. P. y Acevedo H. E. (2008). Carbono orgánico y propiedades del suelo. Revista de la ciencia del suelo y nutrición vegetal, 8(1), 68-96

McLaughlin M. J., McBeath, T. M., Smernik, R., Stacey, S. P., Ajiboye, B. y Guppy, C. (2011). The chemical nature of P accumulation in agricultural soils - implications for fertilizer management and design: an Australian perspective. Plant and Soil, 349(1), 69-87.

Moazed, H., Hoseini, Y., Naseri, A. A. y Abbasi, F., (2010). Determining phosphorus adsorption isotherm in soil and its relation to soil characteristics. Journal of Food, Agriculture & Environment, 8(2),1153-1157.

Moreira, W. H., Tormena, C. A., Karlen, D. L., Pires da Silva, A., Keller, T. y Betiol, E. (2016). Seasonal changes in soil physical properties under long-term no-tillage. Soil & Tillage Research, 160, 53-64.

Nelson, D. W. y Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. En Sparks D. L. (Ed.), Methods of Soil Analysis. Part 3, Madison WI: ASA, SSSA, pp. 961-1010.

Picone, L., Capozzi, I., Zamuner, E., Echeverría, H. y Sainz Rozas, H. (2007). Transformaciones de fósforo en un molisol bajo sistemas de labranza contrastantes. Ciencia del Suelo, 25(2), 99-107.

Pinto, F. A., Damacena de Souza, E., Barbosa Paulino, H., Curi, N. y Carbone Carneiero, M. A. (2013). P-Sorption and desorption in Savanna Brazilian soils as a support for phosphorus fertilizer management. Ciência e Agrotecnologia, 37(6), 521-530.

Pose, N. N., Zamuner, E. C., Picone, L. I., Videla, C. C., Rodríguez, S. y Maceira, N. (2014). Evaluación de indicadores de retención de fósforo en sistemas agrícolas, ganaderos y forestales. Chilean Journal of Agricultura Land Animal Science, ex Agro-Ciencia, 30(1), 65-73.

Pose, N. N., Baeza, M. C., Zamuner, E. C., Di Gerónimo, P. y Videla C. del C. (2016). Parámetros agronómicos y ambientales de fósforo en suelos molisoles con diferentes usos en la provincia de Buenos Aires, Argentina. Acta Agronómica, 65(4), 375-382.

Rashmi, I., Parama, V. R. R. y Biswas, A. K. (2016). Phosphate sorption parameters in relation to soil properties in some major agricultural soils of India. SAARC J. Agri., 14(1), 1-9.

Richardson, A. E., Condron, L. M. y Haygarth, P. M. (2015). Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma, 257-258, 29-39.

Rollán, A. A. del C. y Bachmeier, O. A. (2014). Diffusional transport of chloride and phosphate in soils of the North Central Region of Córdoba (Argentina). IJRDET, 3(4), 62-65.

______ (2015). Effect of Continuous Zero Tillage on the Physical-Functional Behavior of Silty Loam Soils of the Semiarid Central Region of the Province of Córdoba (Argentina). Terra Latinoamericana, 33(4), 275-284.

Rollán, A. A. del C. (2016). Efecto de la Siembra Directa Continua en Suelos de Córdoba, Argentina. Estudios Regionales. Saarbrücken (Alemania), Editorial Académica Española.

Ron, M. de las M., Mandolesi, M. E., Facchinetti, C. y Jürgen Kiessling, R. (2011). Efecto antrópico sobre la fertilidad química de un suelo en el sudoeste bonaerense. Ciencia del suelo, 29(2), 223-231.

Rosolem, C. A. y Merlin, A. (2014). Soil phosphorus availability and soybean response to phosphorus starter fertilizer. Revista Brasileira de Ciência do Solo, 38(5), 1487-1495.

Rubio, G., Cabello, M. J. y Gutiérrez Boem, F.H. (2008). Estimating available soil phosphorus increases after phosphorus additions in Mollisols. Soil Science Society of America Journal. 72, 1721-1727.

Sainz Rozas, H. R., Echeverria, H. E. y Angelini, H. P. (2011). Niveles de carbono orgánico y pH en suelos agrícolas de las regiones pampeana y extrapampeana argentina. Ciencia del suelo, 29(1), 29-37.

_____ (2012). Fósforo disponible en suelos agrícolas de la región Pampeana y Extra Pampeana Argentina. RIA, 38(1), 33-39.

Sánchez, C. y Barberis, N. A. (2013). Caracterización del Territorio Centro de la provincia de Córdoba. Manfredi, Córdoba. Ediciones INTA.

Schmidt, E. S. y Amiotti, N. M. (2015). Propiedades edáficas superficiales en sistemas de agricultura de conservación en la región pampeana semiárida sur. Ciencia del suelo, 33(1), 79-88.

Shi, Y., Ziadi, N., Messiga, A. J., Lalande, R. y Hu, Z. (2015). Soil phosphorus fractions change in winter in a corn-soybean rotation with tillage and phosphorus fertilization. Pedosphere, 25(1), 1-11.

Silva Rossi M. M., Rollán, A. A. del C. y Bachmeier, O. A. (2013). Phosphorus availability in the central area of the Argentine Pampean region. 1: Relationship between soil parameters, adsorption processes and wheat, soybean and corn yields in different soil and management environments. Spanish Journal of Soil Science, 3(1), 45-47.

_____ (2016). Available phosphorus in the central area of the argentinean pampas. 2: Kinetics of adsorption and desorption of phosphorus under different soil and management environments. Spanish Journal of Soil Science, 6(2), 145-158.

Soil Conservation Service (1972). Soil survey laboratory methods and procedures for collecting soils samples. Soil Survey manual. Report, 1. USDA, Washington (USA).

Sparks, D. (1995). Environmental Soil Chemistry. Chapter 5: Sorption phenomena in soil. San Diego, USA. Academic Press.

Stutte, M. I., Shand, C. A., George T. S., Blackwell, M. S. A., Dixon, L., Bol, R., MacKay, R. L., Richardson, A. E., Condron, L. M. y Haygarth, P. M. (2015). Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma, 257-258, 29-39.

Tejada-Tovar, C., Villabona-Ortiz, A. y Garcés-Jaraba, L. (2015). Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. Revista Tecno Lógicas, 18(34), 109-123.

Vázquez, S. y Morales, L. (2000). Adsorción de fósforo por suelos ácidos de Misiones (Argentina). Ciencia del Suelo, 18(2), 89-94.

Vázquez, S., Morales, L. A., Fernández López, C. y Dalurzo, H. C. (2011). Fertilización fosfatada y fracciones de fósforo en alfisoles, ultisoles y oxisoles. Ciencia del Suelo, 29(2), 161-171.

Von Wandruszka, R. (2006). Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical Transactions, 7(6), 1-8.

White, M. J., Storm, D. E., Mittelstet, A., Busteed, P. R., Haggard, B. E. y

Rossi, C. (2014). Development and Testing of an In-Stream Phosphorus Cycling Model for the Soil and Water Assessment Tool. Journal of Environmental Quality, 43(1), 215-223.

Yadav, B. K. y Verma, A. (2012). Phosphate solubilization and mobilization in soil through soil microorganisms under arid ecosystems, the functioning of ecosystems. En Ali, M. (Ed.) In Tech., Recuperado de http://www.intechopen.com/books/the-functioning-of-ecosystems/

Zamuner, E. C., Lloveras, J. y Echeverría, H. (2015). Métodos agronómicos y ambientales de determinación de fósforo en Argiudoles del sudeste bonaerense. Ciencia del Suelo, 33(1), 55-63.