Quantification of the effects of agricultural machinery traffic on soil and sunflower yields (Helianthus annuus L.)

Main Article Content

Guido Fernando Botta
Catalina Romay
Ezequiel Ricardo David Rivero
Alejandra Ezquerra Canalejo
Diego Gabriel Ghelfi
Ramón Jesús Hidalgo

Abstract

Seeds germination and crop productions depend mostly on the planting methods used, initial soil mechanical conditions and soil moisture. The main objective of this work was to quantify the agricultural traffic effects on soil compaction, sunflower (Helianthus annuus L.) seed emergence and yield under two different soil mechanical conditions: No-tillage (NT) and conventional tillage (CT). The trial was located in the western Pampas region during three cropping seasons on an Entic Hapludoll. The parameters measured were: (1) seed emergence, (2) dry bulk density, (3) cone index, (4) water infiltration and (5) crop yields. The main results showed that the emergence was 17.3 % earlier in LC than in NL and the cone index and bulk density values were lower for the CT up to 450 mm. The average yields for the 3 cropping seasons were 3.23 tons ha-1 and 1.99 tons ha-1 for CT and NT, respectively. The main conclusion is that the soil worked under CT is a soil with a low compaction level up to 150 mm. This, in turn, led to a higher plant emergence count and to a more uniform crop establishment and distribution than in the soil worked under NT.

Article Details

How to Cite
Quantification of the effects of agricultural machinery traffic on soil and sunflower yields (Helianthus annuus L.). (2024). AgriScientia, 40(2), 23-35. https://doi.org/10.31047/1668.298x.v40.n2.40953
Section
Short comunications

How to Cite

Quantification of the effects of agricultural machinery traffic on soil and sunflower yields (Helianthus annuus L.). (2024). AgriScientia, 40(2), 23-35. https://doi.org/10.31047/1668.298x.v40.n2.40953

References

American Society of Agricultural and Biological Engineers (ASABE, 2019). ASAE Standard EP542.1 NOV2019: Procedures for Using and Reporting Data Obtained with the Soil Cone Penetrometer. American Society of Agricultural and Biological Engineers.

Antille, D. L., Peets, S., Galambošová, J., Botta, G. F., Rataj, V., Macak, M., Tullberg, J. N., Chamen, W. C. T., White, D. R., Misiewicz, P. A., Hargreaves, P. R., Bienvenido, J. F. y Godwin, R. J. (2019). Review: Soil compaction and controlled traffic farming in arable and grass cropping systems. Agronomy Research, 17(3), 653-682. https://doi.org/10.15159/ar.19.133

Antille, D. L., Bennett, J. M. y Jensen, T. A. (2016). Soil compaction and controlled traffic considerations in Australian cotton-farming systems. Crop & Pasture Science, 67(1), 1-28. https://doi.org/10.1071/CP15097

Arvidsson, J. y Håkansson, I. (2014). Response of different crops to soil compaction—Short-term effects in Swedish field experiments. Soil & Tillage Research, 138, 56-63. https://doi.org/10.1016/j.still.2013.12.006

Ayers, P. D. y Perumpral, J. V. (1982). Moisture and Density Effect on Cone Index. Transactions of the American Society of Agricultural Engineers, 25(5), 1169-1172. https://doi.org/10.13031/2013.33691

Bengough, A. G. y Mullins, C. E. (1990). Mechanical impedance to root growth: a review of experimental techniques and root growth responses. European Journal of Soil Science, 41(3), 341-358. https://doi.org/10.1111/j.1365-2389.1990.tb00070.x

Botta, G. F. Antille, D. L., Nardon, G. F., Rivero, D., Bienvenido, F., Contessotto, E. E., Ezquerra‐Canalejo, A. y Ressia, J. M. (2022). Zero and controlled traffic improved soil physical conditions and soybean yield under no‐tillage. Soil & Tillage Research, 215, 105235. https://doi.org/10.1016/j.still.2021.105235

Botta, G. F., Jorajuria, D., Balbuena, R. y Rosatto, H. (2004). Mechanical and cropping behaviour of direct drilled soil under different traffic intensities: effect on soybean (Glycine max L.) yields. Soil & Tillage Research, 78(1), 53-58. https://doi.org/10.1016/j.still.2004.01.004

Botta, G. F., Nardón, G. F. y Guirado Clavijo, R. (2022). Soil Sustainability: Analysis of the Soil Compaction under Heavy Agricultural Machinery Traffic in Extensive Crops. Agronomy, 12(2), 282. https://doi.org/10.3390/agronomy12020282

Botta, G. F., Pozzolo, O., Bomben, M., Rosatto, H., Rivero, D., Ressia, M., Tourn, M., Soza, E. y Vázquez, J. (2007). Traffic alternatives in harvest of soybean (Glycine max L.): Effect on yields and soil under direct sowing system. Soil & Tillage Research, 96(1–2), 145-154. https://doi.org/10.1016/j.still.2007.05.003

Botta, G. F., Tolón Becerra, A. y Bellora Melcón, F. (2009). Seedbed compaction produced by traffic on four tillage regimes in the rolling Pampas of Argentina. Soil & Tillage Research, 105(1), 128-134. https://doi.org/10.1016/j.still.2009.06.005

Botta, G. F., Tolón Becerra, A., Bienvenido, F., Rivero, D., Laureda, D., Ezquerra-Canalejo, A. y Contessotto, E. E. (2018). Sunflower (Helianthus annuus L.) harvest: Tractor and grain chaser traffic effects on soil compaction and crop yields. Land Degradation & Development, 29(12), 4252-4261. https://doi.org/10.1002/ldr.3181

Chamen, W. C. T., Alakukku, L., Pires, S., Sommer, C., Spoor, G., Tijink, F. y Weisskopf, P. (2003). Prevention strategies for field traffic-induced subsoil compaction: a review. Part 2. Equipment and field practices. Soil & Tillage Research, 73(1-2), 161-174. https://doi.org/10.1016/S0167-1987(03)00108-9

Chyba, J., Kroulík, M., Krištof, K., Misiewicz, P. A. y Chaney, K. (2014). Influence of soil compaction by farm machinery and livestock on water infiltration rate on grassland. Agronomy Research, 12(1), 59-64.

Díaz Zorita, M., Duarte, G. y Plante, E. (2003). Guía para la producción de girasol en siembra directa, Monsanto, Buenos Aires. Asociación Argentina de Girasol (ASAGIR).

Erbach, D. C. (1987). Measurement of Soil Bulk Density and Moisture. Transactions of the American Society of Agricultural Engineers, 30(4), 922-931. https://doi.org/10.13031/2013.30500

Gargicevich, A. (1995). Sembradoras de siembra directa y su efecto sobre la cobertura. In Proyecto Agricultura Conservacionista II. Serie Experiencias. Instituto Nacional de Tecnología Agropecuaria.

Gassel, D. K. (1982). Tillage Effects on Soil Bulk Density and Mechanical Impedance. In: Unger, P. W., Van Doren Jr., D. M., Whisler, F. D., Skidmore, E. L. (Eds.), Predicting Tillage Effects on Soil Physical Properties and Processes, Chapter 4, Vol. 44, 45-67. Assa Special Publications. https://doi.org/10.2134/asaspecpub44

Godwin, R. J. (1990). Agricultural Engineering in Development: tillage for Crop Production in Areas of Low Rainfall. In FAO Agricultural Services Bulletin No. 83. Food and Agricultural Organization of the United Nations.

Håkansson, I., Myrbeck, A. y Etana, A. (2002). A review of research on seedbed preparation for small grains in Sweden. Soil & Tillage Research, 64(1-2), 23-40. https://doi.org/10.1016/S0167-1987(01)00255-0

Håkansson, I. y Reeder, R. C. (1994). Subsoil compaction by vehicles with high axle load–extent, persistence and crop response. Soil & Tillage Research, 29(1-2), 277-304. https://doi.org/10.1016/0167-1987(94)90065-5

Masola, M. J., Alesso, C. A., Carrizo, M. E., Berhongaray, G., Botta, G. F., Horn, R. y Imhoff, S. (2020). Advantages of the one-wheeled tramline for multiple machinery widths method on sunflower (Helianthus annus L.) and maize (Zea mays L.) responses in the Argentinean Flat Pampas. Soil & Tillage Research, 196, 104462. https://doi.org/10.1016/j.still.2019.104462

Ministry of Agriculture, Fisheries and Food (MAFF). (1986). The Analysis of Agricultural Materials: a manual of the analytical methods used by the Agricultural Development and Advisory Service, 3rd Ed. Her Majesty’s Stationary Office.

Nardón, G. F., Botta, G. F., Aikins, K. A., Rivero, D., Bienvenido, F. y Antille D. (2021). Seeding System Configuration Effects on Sunflower Seedling Emergence and Yield under No‐Tillage. Soil Systems, 5(4), 72. https://doi.org/10.3390/soilsystems5040072

Pilatti, M. A. y de Orellana, J. A. (2000). The Ideal Soil: II. Critical Values of an “Ideal Soil” for Mollisols in the North of the Pampean Region (in Argentina). Journal of Sustainable Agriculture, 17(1), 89-112. https://doi.org/10.1300/J064v17n01_08

Pilatti, M. A., de Orellana, J. A. y Felli, O. M. (2003). The Ideal Soil: III. Fitness of Edaphic Variables to Achieve Sustenance in Agroecosystems. Journal of Sustainable Agriculture, 22(2), 109-132. https://doi.org/10.1300/J064v22n02_08

Ramos, J. C., Imhoff, S. C., Pilatti, M. A. y Vegetti, A. C. (2010). Morphological characteristics of soybean root apexes as indicators of soil compaction. Scientia Agricola, 67(6), 707-712. https://doi.org/10.1590/S0103-90162010000600013

Raper, R. L. (2005). Agricultural traffic impacts on soil. Journal of Terramechanics, 42(3-4), 259-280. https://doi.org/10.1016/j.jterra.2004.10.010

Sadras, V. O., Ferreiro, M., Gutheim, F. y Kantolic, A. G. (2009). Desarrollo fenológico y su respuesta a temperatura y fotoperíodo. En: Bases para el manejo del maíz, el girasol y la soja. FH Andrade, VO Sadras (Editores) Tercera Edición ISBN 987-521-047-1, 19-39.

Schneiter, A. A. y Miller, J. F. (1981). Description of Sunflower Growth Stages. Crop Science, 21(6), 901-903. https://doi.org/10.2135/cropsci1981.0011183X002100060024x

Soane, B. D., Dickson, J. W. y Campbell, D. J. (1983). Compaction by agricultural vehicles: A Review. III. Incidence and control of compaction in crop production. Soil & Tillage Research, 2(1), 3-36. https://doi.org/10.1016/0167-1987(82)90030-7

Solhjou, A., Fielke, J. M. y Desbiolles, J. M. A. (2012). Soil translocation by narrow openers with various rake angles. Biosystems Engeneering, 112(1), 65-73. https://doi.org/10.1016/j.biosystemseng.2012.02.006

Soil Survey Staff (2014). Keys to soil taxonomy (12th ed.). United States Department of Agriculture‐Natural Resources Conservation Service.

Statgraphics (Statistical Software) (2009). Stat Point, Technologies Inc., Herndon, Virginia, USA.

Tolón Becerra, A., Tourn, M., Botta, G. F. y Lastra‐Bravo, X. (2011). Effects of different tillage regimes on soil compaction, maize (Zea mays L.) seedling emergence and yields in the eastern Argentinean Pampas region. Soil & Tillage Research, 117, 184-190. https://doi.org/10.1016/j.still.2011.10.003

Tuzzin de Moraes, M., Bengough, A. G., Debiasi, H., Franchini, J. C., Levien, R., Schnepf, A. y Leitner, D. (2018). Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant Soil, 428(1), 67-92. https://doi.org/10.1007/s11104-018-3656-z

Unger, P. W. y Kaspar, T. C. (1994). Soil Compaction and Root Growth: A Review. Agronomy Journal, 86 (5), 759-766. https://doi.org/10.2134/agronj1994.00021962008600050004x

United States Department of Agriculture (2022) Oilseeds and Products Update. Foreign Agricultural Service, Edited by Global Agricultural Information Network, GAIN. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Oilseeds%20and%20Products%20Update_Buenos%20Aires_Argentina_01-04-2022.pdf

Usman, H. (1994). Cattle trampling and soil compaction effects on soil properties of a Northeastern Nigerian sandy loam. Arid Soil Research and Rehabilitation, 8(1), 69-75. https://doi.org/10.1080/15324989309381379

Vega, C.R.C.; Andrade, F.H. Densidad de plantas y espaciamiento entre hileras. En Bases para el Manejo del Maíz, el Girasol y la Soja. Ediciones: Instituto Nacional de Tecnología Agropecuaria INTA, Balcarce, Argentina, Capitulo IV, ISBN 987‐521‐047‐1, 69–97.

Villalobos, F. J. y Ritchie, J. T. (1992). The effect of temperature on leaf emergence rates of sunflower genotypes. Field Crop Research, 29(1), 37-46. https://doi.org/10.1016/0378-4290(92)90074-J

Villalobos, F. J., Hall, A. J., Ritchie, J. T. y Orgaz, F. (1996). OILCROP‐SUN: A Development, Growth, and Yield Model of the Sunflower Crop. Agronomy Journal, 88(3), 403-415. https://doi.org/10.2134/agronj1996.00021962008800030008x