Reference evapotranspiration variation between 1968 and 2018 in Córdoba (Argentina) under the influence of wind speed and thermal amplitude

Main Article Content

Antonio de la Casa
Gustavo Gabriel Ovando
Guillermo José Díaz

Abstract

This work assessed the difference between daily reference evapotranspiration rate (ETo) calculated by the Penman-Monteith method (PM) with the complete set of meteorological variables and that obtained using only thermal records and a constant surface velocity (u2) of 2 m s-1 (PMxn),employing meteorological data from the weather stations Río Cuarto Aero (RC), Marcos Juárez Aero (MJ), Pilar Observatorio (PI) and Villa Dolores Aero (VD) between 1968 and 2018. The difference between ETo rates resulting from PM and PMxn increases linearly with the increase in u2, so that the use of PMxn should be restricted only to places and days with lower u2. The annual ETo values obtained with both procedures show a fluctuation between 1968 and 2018, with decreasing values until the 1990s, when rainfall shows maximum records in the region, and increasing since then. While the thermal amplitude (AT) in PI, MJ and RC shows a fluctuation analogous to ETo, in MJ u2also exhibits a fluctuation in phase with ETo and in VD only u2 presents the long-term variation concurrent to ETo. Solely RC showed an increasing linear trend of ETo.

Article Details

How to Cite
Reference evapotranspiration variation between 1968 and 2018 in Córdoba (Argentina) under the influence of wind speed and thermal amplitude. (2022). AgriScientia, 39(1), 29-47. https://doi.org/10.31047/1668.298x.v39.n1.34573
Section
Articles

How to Cite

Reference evapotranspiration variation between 1968 and 2018 in Córdoba (Argentina) under the influence of wind speed and thermal amplitude. (2022). AgriScientia, 39(1), 29-47. https://doi.org/10.31047/1668.298x.v39.n1.34573

References

Allen, R. G., Pereira, L. S., Raes, D. y Smith, M. (Eds.).(1998). Crop evapotranspiration: Guide-lines for computing crop water requirements - FAO Irrigation and Drain age Paper 56. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). https://www.fao.org/3/x0490e/x0490e00.htm#Contents

Almorox, J., Senatore, A., Quej, V.H. y Mendicino, G. (2016). Worldwide assessment of the Penman–Monteith temperature approach for the estimation of monthly reference evapotranspiration. Theoretical and Applied Climatology,131(1-2), 693-703. https://doi.org/10.1007/s00704-016-1996-2

Brutsaert, W. y Parlange, M. B. (1998). Hydrologic cycle explains the evaporation paradox. Nature,396, 30. https://doi.org/10.1007/s00704-016-1996-2

Chattopadhyay, N. y Hulme, M. (1997). Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology,87(1), 55–73.https://doi.org/10.1016/S0168-1923(97)00006-3

Chen, D., Gao, G., Xu, C.-Y, Guo, J. y Ren, G. Y. (2005). Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China. Climate Research, 28(2), 123–132. https://doi.org/10.3354/cr028123

Dai, A., Trenberth, K.E. y Karl, T.R. (1999). Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. Journal of Climate, 12(8), 2451–2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2

Dai, A., Karl, T. R., Sun, B. y Trenberth, K. E. (2006). Recent Trends in Cloudiness over the United States: A Tale of Monitoring Inadequacies. Bulletin of the American Meteorological Society, 87(5), 597-606. https://doi.org/10.1175/BAMS-87-5-597

D’Andrea, M. F., Rousseau, A. N., Bigah, Y., Gattinoni, N. N. y Brodeur, J. C. (2019). Trends in reference evapotranspiration and associated climate variables over the last 30 years (1984–2014) in the Pampa region of Argentina. Theoretical and Applied Climatology, 136 (3-4), 1371-1386. https://doi.org/10.1007/s00704-018-2565-7

de la Casa. A., Ovando, G. y Rodríguez, A. (2003). Estimación de la radiación solar global en la provincia de Córdoba, Argentina, y su empleo en un modelo de rendimiento potencial de papa. Revista de Investigaciones Agropecuarias, 32(2), 45–62. https://dialnet.unirioja.es/servlet/articulo?codigo=3995607

de la Casa, A. C. y Ovando, G. G. (2014). Climate change and its impact on agricultural potential in the central region of Argentina between 1941 and 2010. Agricultural and Forest Meteorology,195–196, 1–11. https://doi.org/10.1016/j.agrformet.2014.04.005

de la Casa A. C. y Ovando, G. G. (2016). Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. Journal of Hydrology: Regional Studies,5, 66-79. https://doi.org/10.1016/j.ejrh.2015.11.009

de la Casa, A. C., Ovando, G. G. y Díaz, G. J. (2018). Secular variation of rainfall regime in the central region of Argentina. AtmosphericResearch, 213, 196–210. https://doi.org/10.1016/j.atmosres.2018.06.009

de la Casa, A. C., Ovando, G. G. y Díaz, G. J. (2020). Tendencias en la frecuencia, intensidad y variabilidad de la velocidad del viento en Córdoba, Argentina, entre 1968 y 2018. Revista Argentina de Agrometeorología, XI, 1-16. https://www.siteaada.org/_files/ugd/cf1a17_1c5b2216cdea49afa17745a270d63c50.pdf#page=10

Donohue, R. J., McVicar, T. R. y Roderick, M. L. (2010). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1–4), 186–197. https://doi.org/10.1016/j.jhydrol.2010.03.020

Golubev, V. S, Lawrimore, J. H., Groisman, P. Y., Speranskaya, N. A., Zhuravin, S. A., Menne M. J., Peterson, T. C. y Malone, R. W. (2001). Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophysical Research Letters, 28(13), 2665–2668. https://doi.org/10.1029/2000GL012851

Goodin, D. G., Hutchinson, J. M. S., Vanderlip, R. L. y Knapp, M. C. (1999). Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. Agronomy Journal, 91(5), 845-851. https://doi.org/10.2134/agronj1999.915845x

Guo, H., Xu, M. y Hu, Q. (2011). Changes in near-surface wind speed in China: 1969–2005. International Journal of Climatology, 31(3), 349–358. https://doi.org/10.1002/joc.2091

Hargreaves, G. H. y Samani, Z. A. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773

Hobbins, M. T., Ramírez, J. A. y Brown, T. C. (2004). Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophysical Research Letters, 31(13), L13503. https://doi.org/10.1029/2004GL019846

Irmak, S., Kabenge, I., Skaggs, K. E. y Mutiibwa, D. (2012). Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yrperiod in the Platte River Basin, Central Nebraska-USA. Journal of Hydrology,420–421, 228–244. https://doi.org/10.1016/j.jhydrol.2011.12.006

Land and Water Division of Food and Agriculture Organization of the United Nations (2009). The ETo Calculator (version 3.1.) [Software]. Food and Agriculture Organization of the United Nations.

Lawrimore, J. H. y Peterson, T. C. (2000). Pan Evaporation Trends in Dry and Humid Regions of the United States.Journal of Hydrometeorology, 1(6), 543–546. https://doi.org/10.1175/1525-7541(2000)001<0543:PETIDA>2.0.CO;2

Liu, C. y Zeng, Y. (2004). Changes of Pan Evaporation in the Recent 40 Years in the Yellow River Basin. Water International, 29(4), 510–516. https://doi.org/10.1080/02508060408691814

McKenney, M. S. y Rosenberg, N. J. (1993). Sensitivity of some potential evapotranspiration estimation methods to climate change. Agricultural and Forest Meteorology,64(1-2), 81–110. https://doi.org/10.1016/0168-1923(93)90095-Y

McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L.T., Van Niel, T. G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman, S. y Dinpashoh, Y. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 416-417, 182-205. https://doi.org/10.1016/j.jhydrol.2011.10.024

Onyutha, C. (2016). Statistical analyses of potential evapotranspiration changes over the period 1930–2012 in the Nile River riparian countries. Agricultural and Forest Meteorology,226–227, 80–95. https://doi.org/10.1016/j.agrformet.2016.05.015

Paredes, P., Fontes, J. C., Azevedo, E. B. y Pereira, L. S. (2018). Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theoretical and Applied Climatology, 134(1), 595–611. https://doi.org/10.1007/s00704-017-2295-2

Raes, D. (2009). The ETo Calculator (version 3.1.).Reference Manual.Food and Agriculture Organization of the United Nations Ed.,38 pp.

Roderick, M. L. y Farquhar, G. D. (2002). The cause of decreased pan evaporation over the past 50 years. Science, 298 (5597), 1410–1411. https://doi.org/10.1126/science.1075390-a

Roderick, M. L. y Farquhar, G. D. (2004). Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology, 24(9), 1077–1090. https://doi.org/10.1002/joc.1061

Romanić, D., Ćurić, M., Jovičić, I. y Lompar, M. (2015). Long-term trends of the 'Koshava' wind during the period 1949–2010. International Journal of Climatology, 35(2), 288–302. https://doi.org/10.1002/joc.3981

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Theil, H. (1950). A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Proceedings of KoninklijkeNederlandseAkademie van Wetenschappen, 53(3-4), 386–392 (Part 1); 521–525 (Part 2); 1397–1412 (Part 3).

Thomas, A. (2000). Spatial and temporal characteristics of potential evapotranspiration trends over China. International Journal of Climatology,20(4), 381–396. https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4<381::AID-JOC477>3.0.CO;2-K

Valipour, M. (2015). Temperature analysis of reference evapotranspiration models. Meteorological Applications, 22(3), 385–394. https://doi.org/10.1002/met.1465

Vicente-Serrano, S. M., Bidegain, M., Tomas-Burguera, M., Dominguez-Castro, F., El Kenawy, A., McVicar, T. R., Azorin-Molina, C., López-Moreno, J. I., Nieto, R., Gimeno, L. y Giménez, A. (2017). A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). International Journal of Climatology, 38(1), 337-350. https://doi.org/10.1002/joc.5179

Wang, Z., Xie, P., Lai, C., Chen, X., Wu, X., Zeng, Z. y Li, J.(2017). Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of. Hydrology, 544, 97-108. https://doi.org/10.1016/j.jhydrol.2016.11.021

Xu, C.-Y., Gong, L., Jiang, T., Chen, D. y Singh, V.P. (2006). Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327 (1–2), 81–93. https://doi.org/10.1016/j.jhydrol.2005.11.029