Variación de la evapotranspiración de referencia entre 1968 y 2018 en Córdoba (Argentina)bajo la influencia de la velocidad del viento y la amplitud térmica

Contenido principal del artículo

Antonio de la Casa
Gustavo Gabriel Ovando
Guillermo José Díaz

Resumen

Se analizó la diferencia entre la tasa diaria de evapotranspiración de referencia (ETo), que el método de Penman-Monteith (PM) calcula con el conjunto completo de variables meteorológicas y la obtenida utilizando solo registros térmicos y una velocidad superficial (u2) constante de 2 m s-1 (PMxn), empleando información meteorológica de las estaciones Río Cuarto Aero (RC), Marcos Juárez Aero (MJ), Pilar Observatorio (PI) y Villa Dolores Aero (VD) entre 1968 y 2018. La diferencia entre las tasas de ETo que resultan de PM y PMxn se incrementa de manera lineal con el aumento de u2, de modo que el empleo de PMxn debería estar restringido solo a lugares y días de menor u2. Los valores anuales de ETo obtenidos con ambos procedimientos exhiben una fluctuación entre 1968 y 2018, con valores decrecientes hasta la década de 1990, cuando la lluvia acusa registros máximos en la región; y crecientes desde entonces. Mientras la amplitud térmica (AT) en PI, MJ y RC muestra una fluctuación análoga a ETo, en MJ también u2 exhibe una fluctuación en fase con ETo, y en VD solo u2 presenta la variación de largo plazo concurrente a ETo. Únicamente RC mostró una tendencia lineal creciente de ETo.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
de la Casa, A., Ovando, G. G., & Díaz, G. J. . (2022). Variación de la evapotranspiración de referencia entre 1968 y 2018 en Córdoba (Argentina)bajo la influencia de la velocidad del viento y la amplitud térmica. AgriScientia, 39(1), 29–47. https://doi.org/10.31047/1668.298x.v39.n1.34573
Sección
Artículos

Citas

Allen, R. G., Pereira, L. S., Raes, D. y Smith, M. (Eds.).(1998). Crop evapotranspiration: Guide-lines for computing crop water requirements - FAO Irrigation and Drain age Paper 56. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). https://www.fao.org/3/x0490e/x0490e00.htm#Contents

Almorox, J., Senatore, A., Quej, V.H. y Mendicino, G. (2016). Worldwide assessment of the Penman–Monteith temperature approach for the estimation of monthly reference evapotranspiration. Theoretical and Applied Climatology,131(1-2), 693-703. https://doi.org/10.1007/s00704-016-1996-2

Brutsaert, W. y Parlange, M. B. (1998). Hydrologic cycle explains the evaporation paradox. Nature,396, 30. https://doi.org/10.1007/s00704-016-1996-2

Chattopadhyay, N. y Hulme, M. (1997). Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology,87(1), 55–73.https://doi.org/10.1016/S0168-1923(97)00006-3

Chen, D., Gao, G., Xu, C.-Y, Guo, J. y Ren, G. Y. (2005). Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China. Climate Research, 28(2), 123–132. https://doi.org/10.3354/cr028123

Dai, A., Trenberth, K.E. y Karl, T.R. (1999). Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. Journal of Climate, 12(8), 2451–2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2

Dai, A., Karl, T. R., Sun, B. y Trenberth, K. E. (2006). Recent Trends in Cloudiness over the United States: A Tale of Monitoring Inadequacies. Bulletin of the American Meteorological Society, 87(5), 597-606. https://doi.org/10.1175/BAMS-87-5-597

D’Andrea, M. F., Rousseau, A. N., Bigah, Y., Gattinoni, N. N. y Brodeur, J. C. (2019). Trends in reference evapotranspiration and associated climate variables over the last 30 years (1984–2014) in the Pampa region of Argentina. Theoretical and Applied Climatology, 136 (3-4), 1371-1386. https://doi.org/10.1007/s00704-018-2565-7

de la Casa. A., Ovando, G. y Rodríguez, A. (2003). Estimación de la radiación solar global en la provincia de Córdoba, Argentina, y su empleo en un modelo de rendimiento potencial de papa. Revista de Investigaciones Agropecuarias, 32(2), 45–62. https://dialnet.unirioja.es/servlet/articulo?codigo=3995607

de la Casa, A. C. y Ovando, G. G. (2014). Climate change and its impact on agricultural potential in the central region of Argentina between 1941 and 2010. Agricultural and Forest Meteorology,195–196, 1–11. https://doi.org/10.1016/j.agrformet.2014.04.005

de la Casa A. C. y Ovando, G. G. (2016). Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. Journal of Hydrology: Regional Studies,5, 66-79. https://doi.org/10.1016/j.ejrh.2015.11.009

de la Casa, A. C., Ovando, G. G. y Díaz, G. J. (2018). Secular variation of rainfall regime in the central region of Argentina. AtmosphericResearch, 213, 196–210. https://doi.org/10.1016/j.atmosres.2018.06.009

de la Casa, A. C., Ovando, G. G. y Díaz, G. J. (2020). Tendencias en la frecuencia, intensidad y variabilidad de la velocidad del viento en Córdoba, Argentina, entre 1968 y 2018. Revista Argentina de Agrometeorología, XI, 1-16. https://www.siteaada.org/_files/ugd/cf1a17_1c5b2216cdea49afa17745a270d63c50.pdf#page=10

Donohue, R. J., McVicar, T. R. y Roderick, M. L. (2010). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1–4), 186–197. https://doi.org/10.1016/j.jhydrol.2010.03.020

Golubev, V. S, Lawrimore, J. H., Groisman, P. Y., Speranskaya, N. A., Zhuravin, S. A., Menne M. J., Peterson, T. C. y Malone, R. W. (2001). Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophysical Research Letters, 28(13), 2665–2668. https://doi.org/10.1029/2000GL012851

Goodin, D. G., Hutchinson, J. M. S., Vanderlip, R. L. y Knapp, M. C. (1999). Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. Agronomy Journal, 91(5), 845-851. https://doi.org/10.2134/agronj1999.915845x

Guo, H., Xu, M. y Hu, Q. (2011). Changes in near-surface wind speed in China: 1969–2005. International Journal of Climatology, 31(3), 349–358. https://doi.org/10.1002/joc.2091

Hargreaves, G. H. y Samani, Z. A. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773

Hobbins, M. T., Ramírez, J. A. y Brown, T. C. (2004). Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophysical Research Letters, 31(13), L13503. https://doi.org/10.1029/2004GL019846

Irmak, S., Kabenge, I., Skaggs, K. E. y Mutiibwa, D. (2012). Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yrperiod in the Platte River Basin, Central Nebraska-USA. Journal of Hydrology,420–421, 228–244. https://doi.org/10.1016/j.jhydrol.2011.12.006

Land and Water Division of Food and Agriculture Organization of the United Nations (2009). The ETo Calculator (version 3.1.) [Software]. Food and Agriculture Organization of the United Nations.

Lawrimore, J. H. y Peterson, T. C. (2000). Pan Evaporation Trends in Dry and Humid Regions of the United States.Journal of Hydrometeorology, 1(6), 543–546. https://doi.org/10.1175/1525-7541(2000)001<0543:PETIDA>2.0.CO;2

Liu, C. y Zeng, Y. (2004). Changes of Pan Evaporation in the Recent 40 Years in the Yellow River Basin. Water International, 29(4), 510–516. https://doi.org/10.1080/02508060408691814

McKenney, M. S. y Rosenberg, N. J. (1993). Sensitivity of some potential evapotranspiration estimation methods to climate change. Agricultural and Forest Meteorology,64(1-2), 81–110. https://doi.org/10.1016/0168-1923(93)90095-Y

McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L.T., Van Niel, T. G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman, S. y Dinpashoh, Y. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 416-417, 182-205. https://doi.org/10.1016/j.jhydrol.2011.10.024

Onyutha, C. (2016). Statistical analyses of potential evapotranspiration changes over the period 1930–2012 in the Nile River riparian countries. Agricultural and Forest Meteorology,226–227, 80–95. https://doi.org/10.1016/j.agrformet.2016.05.015

Paredes, P., Fontes, J. C., Azevedo, E. B. y Pereira, L. S. (2018). Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theoretical and Applied Climatology, 134(1), 595–611. https://doi.org/10.1007/s00704-017-2295-2

Raes, D. (2009). The ETo Calculator (version 3.1.).Reference Manual.Food and Agriculture Organization of the United Nations Ed.,38 pp.

Roderick, M. L. y Farquhar, G. D. (2002). The cause of decreased pan evaporation over the past 50 years. Science, 298 (5597), 1410–1411. https://doi.org/10.1126/science.1075390-a

Roderick, M. L. y Farquhar, G. D. (2004). Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology, 24(9), 1077–1090. https://doi.org/10.1002/joc.1061

Romanić, D., Ćurić, M., Jovičić, I. y Lompar, M. (2015). Long-term trends of the 'Koshava' wind during the period 1949–2010. International Journal of Climatology, 35(2), 288–302. https://doi.org/10.1002/joc.3981

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Theil, H. (1950). A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Proceedings of KoninklijkeNederlandseAkademie van Wetenschappen, 53(3-4), 386–392 (Part 1); 521–525 (Part 2); 1397–1412 (Part 3).

Thomas, A. (2000). Spatial and temporal characteristics of potential evapotranspiration trends over China. International Journal of Climatology,20(4), 381–396. https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4<381::AID-JOC477>3.0.CO;2-K

Valipour, M. (2015). Temperature analysis of reference evapotranspiration models. Meteorological Applications, 22(3), 385–394. https://doi.org/10.1002/met.1465

Vicente-Serrano, S. M., Bidegain, M., Tomas-Burguera, M., Dominguez-Castro, F., El Kenawy, A., McVicar, T. R., Azorin-Molina, C., López-Moreno, J. I., Nieto, R., Gimeno, L. y Giménez, A. (2017). A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). International Journal of Climatology, 38(1), 337-350. https://doi.org/10.1002/joc.5179

Wang, Z., Xie, P., Lai, C., Chen, X., Wu, X., Zeng, Z. y Li, J.(2017). Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of. Hydrology, 544, 97-108. https://doi.org/10.1016/j.jhydrol.2016.11.021

Xu, C.-Y., Gong, L., Jiang, T., Chen, D. y Singh, V.P. (2006). Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327 (1–2), 81–93. https://doi.org/10.1016/j.jhydrol.2005.11.029