Valuación de opciones reales: análisis comparativo entre el modelo binomial y su versión borrosa
Keywords:
real options, binomial, fuzzyAbstract
The paper shows different real options valuation models classified according to their probabilistic or fuzzy nature, and paying attention to the binomial method and its fuzzy version. The last conjugates binomial real option valuation model’s traditional concepts with the fuzzy logic, and transforms itself in a complement for evaluation investment decisions in real assets, specially, front ambiguities information situations. The structure of the document is the following: first a summary revision is shown, where the real options models are enunciated according their probabilistic or fuzzy nature. Then the binomial model and its fuzzy version is formally derived, and illustrates with an application case. For that a project with options of investment-continue-abandonment is valued. The conclusion is that the fuzzy version is a complement of the binomial model, being useful in investment decisions for information vague or ambiguity situations like innovative projects, technological development, inexistences of mimics financial assets in the market, among other.
Downloads
References
AMRAM, M.; KULATILAKA, N. (1998): “REAL OPTIONS” (1 ed.). Boston, Masachussets, Estados Unidos: Harvard Business School Prees.
ARNOLD, T.; CRACK, T. (2004): “USING THE WACC TO VALUE REAL OPTIONS”. Financial Analysts Journal(60), 78-82.
ARNOLD, T.; CRACK, T.; SCHWARTZ, A. (2004): “IMPLIED BINOMIAL TREES IN EXCEL WHITOUT VBA”. SSRN: Social Science Research NetWork.
BALIERO FILHO, R.; ROSENFELD, R. (2004): “TESTING OPTION PRICING WITH EDGEWORTH EXPANSION”. Physica A: Statistical Mechanis an its Application, 344, 484-490.
BLACK, F.; SCHOLES, M. (1973): “THE PRICING OF OPTIONS AND CORPORATE LIABILITIES”. Journal of Political Economy, 637-659.
BOYLE, P. (1988): “A LATTICE FRAMEWORK FOR OPTION PRICING WITH TWO STATE VARIABLES”. Journal of Finance and Quantitative Analysis, 23, 1-12.
BRANDAO, L.; DYER, J.; HAHN, W. (2005): “USING BINOMIAL DECISION TREES TO SOLVE REAL OPTIONS VALUATIONS PROBLEMS”. Journal
of Decision Analysis(2), 69-88.
BRANDAO, L.; DYER, J. (2009): “PROJETOS DE OPCOES REIS COM INCERTEZAS CORRELACIONADAS”. Revista de Administracao e Contabilidade da Unisinos(1), 19-26.
CARLSSON, C.; FULLER, R. (2001): “ON POSSIBILISTIC MEAN VALUE AND VARIANCE FUZZY NUMBERS”. Fuzzy Sets and Systems(122), 772-
777.
CARLSSON, C.; FULLER, R. (2003): “A FUZZY APPROACH TO REAL OPTION VALUATION”. Fuzzy Sets and Systems(139), 315-326.
CARLSSON, C.; FULLER, R.; HEIKKILA, M.; MAJLENDER, P. (2007): “A FUZZY APPROACH TO R&D PROJECT PORTFOLIO SELECTION”. Interntational Journal of Approximating Reasoning(44), 93-105.
COLLAN, M.; FULLÉR, R.; MEZEI, J. (2009): “FUZZY PAY-OFF METHOD FOR REAL OPTION VALUATION”. Journal of Applied Mathematics and
Decision Systems, ID 238196, 1-14.
COPELAND, T.; ANTIKAROV, V. (2001): “REAL OPTIONS” (1 ed.). New York: Texere LLC.
COPELAND, T.; TUFANO, P. (2004): “A REAL WORLD TO MANAGE REAL OPTIONS”. Harvard Business School Review(82), 90-99.
COX, J.; ROSS, S.; RUBINSTEIN, M. (Septiembre de 1979): “OPTION PRICING: A SIMPLIFIED APPROACH”. Journal of Financial Economics, 229-263.
DATAR, V.; MATEWS, S.; JOHNSON, B. (2007): “A PRACTICAL METHOD FOR VALUING REAL OPTIONS: THE BOEING APPROACH”. Journal of Applied Corporate Finance, 19, 95-104.
DATAR, V.; MATHEWS, S. (2004): “EUROPEAN REAL OPTIONS: AN INTUITIVE ALGORITHM FOR THE BLACK-SCHOLES FORMULA”. Journal of Applied Finance, 14, 7-13.
DERMAN, E.; KANI, I.; CHRISS, N. (1996): “IMPLIED TRINOMIAL TREES OF THE VOLATILITY SMILE”. (Goldman-Sachs, Ed.) Quantitative strategies research notes.
DIXIT, A.; PINDYCK, R. (1994): “INVESTMENT UNDER UNCERTAINTY” (1 ed.). New Jersey: Pricenton University Press.
DUBOIS, D.; PRADE, H. (1980): “FUZZY SETS AND SYSTEMS”. New York: Academic Press.
EN SHINE YU, S.; MING, H.; LI, Y.; CHEN YUAN, L. (2011): “A NOVEL OPTION PRICING MODEL VIA FUZZY BINOMIAL DECISION TREE”.
International Journal of Innovative Computing, Information and Control, 7(2), 709-718.
FORNERO, R. (2012): “EL VALOR DE LOS PROYECTOS DE INVERSIÓN CON ESTIMACIONES PROBABILISTICAS Y BORROSAS”. XXXII Jornadas Nacionales de Administración Financiera, XXXII, 83-135.
FULLER, R.; MAJLENDER, P. (2003): “ON WEIGTHED POSSIBILISTIC MEAN AND VARIANCE OF FUZZY NUMBERS”. Fuzzy Sets and Systems(136), 363-374.
HAAHTELA, T. (2010): “DISPLACED DIFFUSION BINOMIAL TREE FOR REAL OPTION VALUATION”. SSRN: SSRN-Social Science Research Network. Obtenido de www.ssrn.com.
HAAHTELA, T. (2010): “RECOMBINING TRINOMIAL TREE FOR REAL OPTION VALUATION WITH CHANGING VOLATILITY”. SSRN-Social Science Research Network. Obtenido de www.ssrn.com.
HAAHTELA, T. (2011): “ESTIMATING CHANGING VOLATILITY IN CASH FLOW SIMULATION BASED REAL OPTIONS VALUATION WITH REGRESSION SUM OF SQUARED ERROR METHOD”. SSRN: Social Science Research Network.
HAUG GAARDER, E. (2007): “DERIVATIVES: MODELS OND MODELS” (1 ed.). Chichester : John Wiley & Sons.
HULL, J. (2006): “FUTURES, OPTIONS AND OTHER DERIVATIVES” (6 ed.). New Jersey: Prentice Hall.
GARCIA SASTRE, M.; ROSELLÓ MIRALLES, M. (2007): “LA LÓGICA BORROSA PARA VALORAR LA INCERTIDUMBRE EN LA TÉCNICA DE VALORACIÓN DE OPCIONES REALES”. (A. E. (AEDEM), Ed.) DIALNET OAI Articles, http://dialnet.unirioja.es/servlet/oaiart?codigo=2499409, 1-22.
JABBOUR, G.; KRAMIN, M.; YOUNG, S. (2001): “TWO-STATE OPTION PRICING: BINOMIAL MODELS REVISITED”. Journal of Futures Markets, 21, 987-1001.
JARROW, R.; RUDD, A. (1982): “APROXIMATE OPTION VALUATION FOR ARBITRARY STOCHASTIC PROCESSES”. Journal of Financial Economics, 10, 347-369.
KAHRAMAN,C; RUAN, D.; TOLGA, E. (2002): “CAPITAL BUDGETING TECHNIQUES USING DISCOUNTED FUZZY VERSUS PROBABILISTICS CASH FLOW”. Information Science (142), 57-76.
KINNUNEN, J. (2010): “VALUING M&A SYNERGIES AS (FUZZY) REAL OPTIONS”. Abo Akedimi University.
LEÓN, A.; MENCIA, J.; SENTARIA, E. (2007): “PARAMETRIC PROPERTIES OF SEMI-NONPARAMETRIC DISTRIBUTIONS, WITH APPLICATION TO OPTIONS VALUATION”. Documento de Trabajo 0707 Banco de España, 9-30.
LIAO, S.; HO, S. (2010): “INVESTMENT PROJECT VALUATION BASED ON A FUZZY BIONOMIAL APPROACH”. Information Sciences(180), 2124-
2133.
LUHERMAN, T. (1998): “INVESTMENT SCIENCE” (1 ed.). New York: Oxford University Press.
LUHERMAN, T. (1998): “INVESTMENT OPPORTUNITIES AS REAL OPTIONS: GET STARTED WITH THE NUMBERS”. Harvard Business Review(4), 51-67.
MERTON, R. (1973): “THE THEORY OF RATIONAL OPTIONS PRINCING”. Bell Journal of Economics and Management Science, 141-183.
MILANESI, G. (2012): “OPCIONES REALES: EL MÉTODO BINOMIAL, ASIMETRÍA Y CURTOSIS EN LA VALORACIÓN DE EMPRESAS DE BASE TECNOLÓGICA”. Revista Española de Capital de Riesgo(2), 41-55.
MUN, J. (2004): “REAL OPTIONS ANALYSIS: TOOLS AND TECHNIQUES FOR VALUING STRATEGIC INVESTMENT AND DECISIONS” (1 ed.). New York: Wiley.
MUZZIOLI, S.; TORRICELLI, A. (2004): “A MULTIPERIOD BINOMIAL MODEL FOR PRICING OPTIONS IN A VAGUE WORLD”. Journal of Economics and Dynamics Control(28), 861-867.
RENDLEMAN, R.; BARTTER, B. (1979): “TWO-STATE OPTION PRICING”. Journal of Finance(34), 1092-1110.
RUBINSTEIN, M. (1994): “IMPLIED BINOMIAL TREES”. Journal of Finance, 49, 771-818.
RUBINSTEIN, M. (1998): “EDGEWORTH BINOMIAL TREES”. Journal of Derivatives(5), 20-27.
RUBINSTEIN, M. (2000): “ON THE RELATION BETWEEN BINOMIAL AND TRINOMIAL OPTION PRICING MODEL”. Berkeley, Research Program in
Finance-292. California: UC Berkeley.
SMIT, H.; TRIGEORGIS, L. (2004): “STRATEGIC INVESTMENT: REAL OPTIONS AND GAMES” (1 ed.). New Jersey, Estados Unidos: Princeton University Press.
SMITH, J. (2005): “ALTERNATIVE APPROACH FOR SOLVING REAL OPTIONS PROBLEMS”. Decision Analysis(2), 89-102.
SMITH, J.; NAU, R. (1995): “VALUING RISKY PROJECTS: OPTION PRICING THEORY AND DECISION ANAYSIS”. Management Science(5),
795-816.
TRIGEORGIS, L.; MASON, S. (1987): “VALUING MANAGERIAL FLEXIBILIY”. Midland Corporate Finance, 5, 14-21. • TRIGEORGIS, L. (1988): “A CONCEPTUAL OPTIONS FRAMEWORK FOR CAPITAL BUDGETING”. Advances in Futures and Options Research(4), 145-167.
TRIGEORGIS, L. (1995): “REAL OPTIONS IN CAPITAL INVESTMENT: MODELS, STRATEGIES AND APPLICATIONS” (1 ed.). London, United Kindgon: Praeger.
TRIGEORGIS, L. (1997): “REAL OPTIONS: MANAGERIAL FLEXIBILITY AND STRATEGY IN RESOURCE ALLOCATIONS” (2 ed.). Cambridge: MIT Press.
WANG, A.; HALAL, W. (2010): “COMPARISION OF REAL ASSET VALUATION MODELS: A LITERATURE REVIEW”. International Journal of Business and Management(5), 14-24.
WILMOTT, P. (2009): “FREQUENTLY ASKED QUESTIONS IN QUANTITATIVE FINANCE” (Segunda ed.). United Kingdom: John Wiley & Sons.
YOSHIDA, Y.; YASUDA, M.; NAKAGAMI, J.; KURANO, M. (2006): “A NEW EVALUATION OF MEAN VALUE FOR FUZZY NUMBERS AND ITS APPLICATION TO AMERICAN OPTIONS UNDER UNCERTAINTY”. Fuzzy Sets and Systems(157), 2614-2626.
ZADEH, L. (1965): “FUZZY SETS”. Information Control, 3(8), 338-353.
ZDNEK, Z. (2010): “GENERALISED SOFT BINOMIAL AMERICAN REAL OPTION PRICING MODEL”. European Journal of Operational Research(207), 1096-1103.
Downloads
Published
Issue
Section
License
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.