Comparación de métodos de agregación y ponderación evaluando la perdida de información en la construcción de indicadores del desarrollo humano de países latinoamericanos
Keywords:
Human Development Index (HDI), aggregating methods, weighting methods, information loss, BootstrapAbstract
The need for establishing synthetic measures of the performance of different territorial units has prompted an increase in the construction and publication of composite indicators for different purposes and applying different methodologies.
The United Nations Program for Development (UNDP) publishes since 1990 the Human Development Index (HDI). Although it meant a breakthrough in measuring this subject has also been widely criticized.
In this paper we use different weighting and aggregation methods to construct alternative indices to the HDI and compare them using the concept of loss of information proposed by Zhou and Ang (2009) in order to analyze whether any of them is more appropriate in relation with this concept.
In order to establish confidence intervals for this measure, artificial samples using the Bootstrap technique were generated.
Downloads
References
ATKINSON, B. (1970): “ON THE MEASUREMENT OF INEQUALITY”. Journal of Economic Theory, Vol. 2, pp 244-263.
BARBA–ROMERO, S.; POMEROL, J-C., (1997): “DECISIONES MULTICRITERIO: FUNDAMENTOS TEÓRICOS Y UTILIZACIÓN PRÁCTICA”. Universidad de Alcalá, España.
DIAKOULAKI, D.; MAVROTAS, G.; PAPAYANNAKIS, L. (1995): “DETERMING OBJECTIVE WEIGHTS IN MULTIPLE CRITERIA PROBLEMS: THE CRITIC METHOD”. Computers Operations Research, 22, N° 7, 763-770.
EFRON, B.; TIBSHIRANI, R. (1986): “BOOTSTRAP METHODS FOR STANDARD ERRORS, CONFIDENCE INTERVALS, AND OTHER MEASURES OF STATISTICAL ACCURACY”. Statistical Science, Vol. 1, N° 1, 54-75.
FUNES, M.; RACAGNI, J.; GUEVEL, H. (2013): “COMPARACIÓN DE MÉTODOS DE AGREGACIÓN Y PONDERACIÓN EN LA CONSTRUCCIÓN DE UN INDICADOR DEL DESARROLLO HUMANO DE PAÍSES LATINOAMERICANOS”. XXVI Encuentro Nacional de Docentes en Investigación Operativa (ENDIO) - XXIV Escuela de Perfeccionamiento en Investigación Operativa (EPIO), Córdoba, República Argentina.
GUITOUNI, A.; MARTEL, J. (1998): “TENTATIVE GUIDELINES TO HELP CHOOSING AN APPROPRIATE MCDA METHOD”. European Journal of Operational Research 109, pp 501-521.
HWANG, C.; LAI, Y.J.; LIU, T.Y. (1994): “TOPSIS FOR MODM”. European Journal of Operation Research,Vol. 76. pp 486-500.
MUNDA, G.; NARDO, M. (2005): “CONSTRUCTING CONSISTENT COMPOSITE INDICATORS: THE ISSUE OF WEIGHTS”. European Commission, Directorate-General Joint Research Centre, Institute for the Protection and Security of the Citizen.
NARDO, M.; SAISANA, M.; SALTELLI, A.; TARANTOLA, S.; HOFFMAN, A.; GIOVANNINI, E. (2008): “HANDBOOK ON CONSTRUCTIG COMPOSITE
INDICATORS: METODOLOGY AND USER GUIDE”. OECD Statistics Working Paper – STD/DOC.
PEÑA, D. (2001): “FUNDAMENTOS DE ESTADÍSTICA”. Alianza Editorial, España.
PNUD (PROGRAMA DE LA NACIONES UNIDAS PARA EL DESARROLLO): “INFORME SOBRE DESARROLLO HUMANO 2007-2008”. Disponible en:
http://hdr.undp.org/en/media/HDR_20072008_SP_Complete.pdf.
ZHOU, P.; ANG, B. W.; POH, K. L. (2006): “COMPARING AGGREGATING METHODS FOR CONSTRUCTING THE COMPOSITE ENVIRONMENTAL
INDEX: AN OBJECTIVE MEASURE”. Ecological Economics 59, pp 305-311.
ZHOU, P.; ANG, B. W. (2009): “COMPARING MCDA AGGREGATION METHODS IN CONSTRUCTING COMPOSITE INDICATORS USING THE SHANNON-SPEARMAN MEASURE”. Soc Indic Res (2009) 94, pp 83-96.
ZELENY, M. (1982): “MULTIPLE CRITERIA DECISION MAKING”. McGraw- Hill Book Company, New York, USA.
Downloads
Published
Issue
Section
License
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.