Selection of bacterial isolates with fungal inhibition against alfalfa phytopathogens to constitute a bacterial consortium

Main Article Content

María Valeria Moreno
Valeria Arolfo
José Luis López
Sofía Agostina Erdozain
Ezequiel Darío Bigatton
Ibrahim Ayoub
Enrique Iván Lucini
Antonio Lagares
Ariel Odorizzi

Abstract

Alfalfa breeding programs require environmentally friendly alternatives to improve plant growth and health. Plant Growth Promoting Rhizobacteria (PGPR) and endophytic bacteria offer a biological solution as they can inhibit
phytopathogenic fungi by producing antifungal compounds or enzymes. In Argentina, alfalfa is primarily affected by Colletotrichum trifolii (Ct) and Phytophthora megasperma (Pm). The objectives of this study were to select bacterial isolates with antifungal inhibition against Ct and Pm and identify a biocontroller isolate compatible with the rhizobia INTA5 has and with low-N2O emissions, to constitute an eco-friendly bacterial consortium. Ten isolates demonstrated antifungal inhibition, with mean Inhibition Percentage (IP) values between 41.74-91.28 for Ct and 56.23-77.59 for Pm compared to the control. Among these isolates, B2, B4, SC6, and MN1 showed the highest inhibition performance and were selected to evaluate their compatibility with INTA5. Only B4 exhibited compatibility, which was further evaluated against Ct in an experiment with alfalfa seedlings under controlled conditions. The alfalfa
seedlings treated with B4 increased the plant survival number against Ct. The availability of a bacterial consortium that promotes biocontrol and biological nitrogen fixation represents the preferred strategy for alfalfa breeding programs.

Downloads

Download data is not yet available.

Article Details

How to Cite
Moreno, M. V., Arolfo, V., López, J. L., Erdozain, S. A., Bigatton, E. D., Ayoub, I., Lucini, E. I., Lagares, A., & Odorizzi, A. (2024). Selection of bacterial isolates with fungal inhibition against alfalfa phytopathogens to constitute a bacterial consortium. AgriScientia, 41(1), 73–82. https://doi.org/10.31047/1668.298x.v41.n1.41895
Section
Articles

References

Ahemad, M. and Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University- Science, 26, 1–20. https://doi.org/10.1016/j.jksus.2013.05.001 DOI: https://doi.org/10.1016/j.jksus.2013.05.001

Astorga-Quirós, K., Meneses-Montero, K., Zúñiga-Vega, C., Brenes-Madriz, J. and Rivera-Méndez, W. (2014). Evaluación del antagonismo de Trichoderma sp. y Bacillus subtilis contra tres patógenos del ajo. Tecnología en Marcha, 27(2), 82-91. https://www.scielo.sa.cr/pdf/tem/v27n2/a08v27n2.pdf DOI: https://doi.org/10.18845/tm.v27i2.1929

Basigalup, D., Odorizzi, A. and Arolfo, V. (2020). Alfalfa (Medicago sativa L.) en Argentina. Editorial Académica Española.

Bigatton, E. D., Ayoub, I., Palmero, F., Berdini, A., Baldessari, J. J., Castillejo Sánchez, M. A., Lucini, E. I. and Haro, R. J. (2021). Plant growth promoting rhizobacteria: effects on root growth and yield of peanut (Arachis hypogaea L.) crop. South American Science, 2, e21126. https://doi.org/10.52755/sas.v2iedesp1.126 DOI: https://doi.org/10.52755/sas.v2iedesp1.126

Brambilla, S., Soto, G., Odorizzi, A., Arolfo, V., McCormick, W., Primo, E., Giordano, W., Jozefkowicz, C. and Ayub, N. (2019). Spontaneous mutations in the nitrate reductase gene napC drive the emergence of eco-friendly low-N2O-emitting alfalfa rhizobia in regions with different climates. Microbial Ecology, 79, 1044–1053. https://doi.org/10.1007/s00248-019-01473-w DOI: https://doi.org/10.1007/s00248-019-01473-w

Burgos-Toro, A. D. (2019). Antagonismo e inhibición de la comunicación bacteriana en bacterias cultivables aisladas de esponjas del caribe colombiano con biofouling y sin biofouling. Unpublished master thesis, Universidad Nacional de Colombia, Colombia. http://repositorio.unal.edu.co/bitstream/handle/unal/78125/1147687914.2020.pdf?sequence=1&isAllowed=y

Carruthers, F. L., Shum-Thomas, T., Conner, A. J. and Mahanty, H. K. (1995). The significance of antibiotic production by Pseudomonas aureofaciens PA 147-2 for biological control of Phytophthora megasperma root rot of asparagus. Plant and Soil, 170, 339–344. https://doi.org/10.1007/BF00010487 DOI: https://doi.org/10.1007/BF00010487

Díaz Herrera, S., Grossi, C., Zawoznik, M. and Groppa, M. D. (2016). Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research, 186-187, 37–43. http://dx.doi.org/10.1016/j.micres.2016.03.002 DOI: https://doi.org/10.1016/j.micres.2016.03.002

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M. and Robledo, C. W. (2018). InfoStat versión 2018. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Douville, Y. and Boland, J. G. (1992). A note on the antibiotic properties of Bacillus subtilis against Colletotrichum trifolii. Phytoprotection, 73(1), 1–36. https://doi.org/10.7202/706018ar DOI: https://doi.org/10.7202/706018ar

Fathi, F., Saberi-Riseh, R. and Moradi, M. (2018). The effects of biocontrol Bacillus and Pseudomonas strains on plant growth and biochemical defense mechanisms in pistachio seedlings inoculated with Phytophthora drechsleri. Pistachio and Health Journal, 1(3), 15–26. https://doi.org/10.22123/phj.2018.144287.1010

Gagne-Bourgue, F., Aliferis, K. A., Seguin, P., Rani, M., Samson, R. and Jabaji, S. (2013). Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. Journal of Applied Microbiology, 114(3), 836–853. https://doi.org/10.1111/jam.12088 DOI: https://doi.org/10.1111/jam.12088

Gieco, J., Moreno, M. V. and Basigalup, D. (2007). Enfermedades de la alfalfa y abordaje molecular de la selección por resistencia. In: D. Basigalup (Ed.), El cultivo de la alfalfa en la Argentina (pp. 451–475). Ediciones INTA.

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S. and Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140. http://doi.org/10.1016/j.micres.2017.08.016 DOI: https://doi.org/10.1016/j.micres.2017.08.016

Guo, D., Yuan, C., Luo, Y., Chen, Y., Lu, M., Chen, G., Ren, G., Cui, C., Zhang, J. and An, D. (2019). Biocontrol of PGPR strain Bacillus amyloliquefaciens Ba168 against Phytophthora nicotianae on tobacco. BioRxiv, 1–21. https://doi.org/10.1101/700757 DOI: https://doi.org/10.1101/700757

Guo, D., Yuan, C., Luo, Y., Chen, Y., Lu, M., Chen, G., Ren, G., Cui, C., Zhang, J. and An, D. (2020). Biocontrol of tobacco black shank disease (Phytophthora nicotianae) by Bacillus velezensis Ba168. Pesticide Biochemistry and Physiology, 165, 1–10. https://doi.org/10.1016/j.pestbp.2020.01.004 DOI: https://doi.org/10.1016/j.pestbp.2020.01.004

Hardoim, P. R., Hardoim, C. C., van Overbeek, L. S. and van Elsas, J. D. (2012). Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7, e30438. http://dx.doi.org/10.1371/journal.pone.0030438 DOI: https://doi.org/10.1371/journal.pone.0030438

Jozefkowicz, C., Brambilla, S., Frare, R., Stritzler, M., Puente, M., Piccinetti, C., Soto, G. and Ayub, N. (2017). Microevolution rather than large genome divergence determines the effectiveness of legume-rhizobia symbiotic interaction under field conditions. Journal of Molecular Evolution, 85, 79–83. https://doi.org/10.1007/s00239-017-9808-6 DOI: https://doi.org/10.1007/s00239-017-9808-6

Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H. and Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa and Cucumis sativus seedlings. Soil and Tillage Research, 199, 104577. https://doi.org/10.1016/j.still.2020.104577 DOI: https://doi.org/10.1016/j.still.2020.104577

López, J. L., Álvarez, F., Príncipe, A., Salas, M. E., Lozano, M. J., Draghi, W. O., Jofré, E. and Lagares, A. (2018). Isolation, taxonomic analysis and phenotypic characterization of bacterial endophytes present in alfalfa (Medicago sativa) seeds. Journal of Biotechnology, 267, 55–62. https://doi.org/10.1016/j.jbiotec.2017.12.020 DOI: https://doi.org/10.1016/j.jbiotec.2017.12.020

López-López, A., Rogel, M. A., Ormeno-Orrillo, E., Martínez-Romero, J., and Martínez-Romero, E. (2010). Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp nov. Systematic and Applied Microbiology, 33(6), 322–327. https://doi.org/10.1016/j.syapm.2010.07.005 DOI: https://doi.org/10.1016/j.syapm.2010.07.005

Malfanova, N., Lugtenberg, B. J. J. and Berg, G. (2013). Bacterial endophytes: who and where, and what are they doing there? In: F. J. DeBruijn (Ed.), Molecular Microbial Ecology of the Rhizosphere (pp. 391–403). Wiley-Blackwell Hoboken. https://doi.org/10.1002/9781118297674.ch36 DOI: https://doi.org/10.1002/9781118297674.ch36

Mukhopadhyay, K., Garrison, N. K., Hinton, D. M., Bacon, C. W., Khush, G. S., Peck, H. D. and Datta, N. (1996). Identification and characterization of bacterial endophytes of rice. Mycopathologia, 134, 151–159. https://doi.org/10.1007/BF00436723 DOI: https://doi.org/10.1007/BF00436723

Noori, F., Etesami, H., Zarini, H. N., Khoshkholgh-Sima, N. A., Salekdeh, G. H. and Alishahi, F. (2018). Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicology and Environmental Safety, 162, 129–138. https://doi.org/10.1016/j.ecoenv.2018.06.092 DOI: https://doi.org/10.1016/j.ecoenv.2018.06.092

Odorizzi, A. S. (2015). Parámetros genéticos, rendimiento y calidad forrajera en alfalfas (Medicago sativa L.) extremadamente sin reposo con expresión variable del carácter multifoliolado obtenidas por selección fenotípica recurrente. [Tesis de doctorado]. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. Córdoba, Argentina. http://hdl.handle.net/11086/1834

Pini, F., Frascella, A., Santopolo, L., Bazzicalupo, M., Biondi, E. G., Scotti, C. and Mengoni, A. (2012). Exploring the plant-associated bacterial communities in Medicago sativa L. BMC Microbiology, 12, 78. http://dx.doi.org/10.1186/1471-2180-12-78 DOI: https://doi.org/10.1186/1471-2180-12-78

Qiao, J., Wu, H., Huo, R., Gao, X. and Borriss, R. (2014). Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chemical and Biological Technologies in Agriculture, 1, 12. https://doi.org/10.1186/s40538-014-0012-2 DOI: https://doi.org/10.1186/s40538-014-0012-2

Rodríguez, J., Ríos, Y. and Baró, Y. (2016). Efectividad de cepas de Azotobacter sp. y Bacillus sp. para el control de especies fúngicas asociadas a hortalizas. Cultivos Tropicales, 37, 13–19. http://scielo.sld.cu/scielo.php?pid=S0258-59362016000500002&script=sci_arttext&tlng=en

Rojas-Badía, M. M., Sánchez Castro, D., Rosales Perdomo, K. and Lugo Moya, D. (2017). Antagonismo de Bacillus frente a hongos fitopatógenos de cultivos hortícolas. Revista de Protección Vegetal, 32(2), 1–9. http://scielo.sld.cu/scielo.php?pid=S1010-27522017000200005&script=sci_arttext&tlng=pt

Ruzzi, M. and Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124–134. http://dx.doi.org/10.1016/j.scienta.2015.08.042 DOI: https://doi.org/10.1016/j.scienta.2015.08.042

Sundaramoorthy, S. and Balabaskar, P. (2013). Evaluation of combined efficacy of Pseudomonas fluorescens and Bacillus subtilis in managing tomato wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathology Journal, 12(4), 154–161. https://doi.org/10.3923/ppj.2013.154.161 DOI: https://doi.org/10.3923/ppj.2013.154.161

Xu, M., Sheng, J., Chen, L., Men, Y., Gan, L., Guo, S. and Shen, L. (2014). Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World Journal of Microbiology and Biotechnology, 30, 835–845. https://doi.org/10.1007/s11274-013-1486-y DOI: https://doi.org/10.1007/s11274-013-1486-y

Yu, Y., Gui, Y., Li, Z., Jiang, C., Guo, J., and Niu, D. (2022). Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants, 11, 386. https://doi.org/10.3390/plants11030386 DOI: https://doi.org/10.3390/plants11030386