Reaction of grapevine rootstocks and cultivars to Meloidogyne incognita, M. arenaria and M. hapla

Main Article Content

Ricardo Andreé Vega-Callo
Juan José Tamo-Zegarra
Cristiano Belle

Abstract

This study aimed to evaluate the reaction of six grapevine rootstocks (MGT 101-14, Ritcher 110, Paulsen 1103, K 5BB, SO4, Salt creek) and two cultivars (Quebranta and Torontel) to three species of the root-knot nematode (Meloidogyne incognita, M. arenaria and M.hapla). The experiment was performed as a completely randomized design with an 8 × 3 factorial scheme and six replicates per treatment. The experimental unit in each replicate comprised a grapevine cutting planted in 3 kg bags with sterilized soil. Cuttings were inoculated with 5000 eggs + juveniles (J2) of M. incognita, M. arenaria and M. hapla. Six months after inoculation, plants were removed from the bags, and the reaction was determined by evaluating the number of galls (NG), number of nematodes per gram of root (NNGR), and reproduction factor (RF). The evaluated rootstocks, MGT 101-14, Ritcher 110, Paulsen 1103, K 5BB, SO4 and Salt Creek, were resistant to M. incognita, M. arenaria and M. hapla, except for Salt creek, which was susceptible to the latter. The Quebranta and Torontel cultivars were susceptible to the  Meloidogyne species under study.

Downloads

Download data is not yet available.

Article Details

How to Cite
Vega-Callo, R. A. ., Tamo-Zegarra, J. J. ., & Belle, C. (2021). Reaction of grapevine rootstocks and cultivars to Meloidogyne incognita, M. arenaria and M. hapla. AgriScientia, 38(1), 93–98. https://doi.org/10.31047/1668.298x.v38.n1.29368
Section
Articles

References

Aballay, E. and Vilches, O. (2015). Resistance assessment of grapevine rootstocks used in Chile to the root knot nematodes Meloidogyneethiopica, M. hapla, and M. javanica. Ciencia e Investigación Agraria, 42 (3), 407-413. DOI: https://dx.doi.org/10.4067/S0718-16202015000300009

Bavaresco, L. and Lovisolo, C. (2015). Effect of grafting on grapevine chlorosis and hydraulic conductivity. VITIS-Journal of Grapevine Research, 39 (3), 89. DOI: https://doi.org/10.5073/vitis.2000.39.89-92

Boubals, D. (1992). Ausujet de larésistance à l’anguillule de lavigne. Le Progrès Agricole et Viticole. 109 (2), 118.

Carneiro, R. and Almeida, M. (2001). Técnica de eletroforese usada no estudo de enzimas dos nematoides das galhas para identificação de espécies. Nematologia Brasileira, 25, 35-44.

Dalmasso, A. and Cuani, A. (1976). Resistancedes porte-greffes de vignes a differentes populationsdunematodo Meloidogyne hapla. ProgresAgricole et Viticole 93(25), 800-807.

Ferris, H., Zheng, L. and Walker, M. A. (2012). Resistance of grape rootstocks to plant-parasitic nematodes. Journal of Nematology, 44 (4), 377-386. Retrieved from: https://pubmed.ncbi.nlm.nih.gov/23482972/

Ferris, H., Zheng, L. and Walker, M. A. (2013). Soil temperature effects on the interaction of grape rootstocks and plant-parasitic nematodes. Journal of Nematology, 45, 49–57. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625132/pdf/49.pdf

Fort, K., Fraga, J., Grossi, D. and Walker, M. A. (2017). Early measures of drought tolerance in four grape rootstocks. Journal of the American Society for

Horticultural Science, 142, 36-46. DOI: https://doi.org/10.21273/JASHS03919-16

Gutiérrez-Gutiérrez, C., Palomares-Rius, J. E., Jiménez-Díaz, R. M. and Castillo, P. (2011). Host suitability of Vitis rootstocks to root-knot nematodes (Meloidogyne

spp.) and the dagger nematode Xiphinema index, and plant damage caused by infections. Plant Pathology, 60 (3), 575- 585. DOI: https://doi.org/10.1111/j.1365-

2010.02404.x

Hartmann, K. M. and Sasser, J. N. (1985). Identification of Meloidogyne species on the basis of differential hosts tests and perineal–patternmorphology. In: K. Barker,

C.C. Carter and J. Sasser (Eds.). In AnAdvancedTreatiseonMeloidogyne. Vol. II: Methodology (69–77). Raleigh, UnitedStates: Department of PlantPathology,

North Carolina StateUniversity.

Hussey, R. and Barker, K. R. (1973). A comparison of nematodes of collecting inocula for Meloidogyne spp, including a new technique. Plant DiseaseReport, 57, 1025–1028.

McKenry, M. V. and Anwar, S. A. (2006). Nematode and grape rootstock interactions including an improved understanding of tolerance. Journal of Nematology, 38 (3), 312-318. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586707/

Ministerio de Agricultura y Riego de Perú (MINAGRI) (2019). La uva peruana: Una oportunidad en el Mercado Mundial. Retrievedfrom: https://cdn.www.gob.pe/uploads/document/file/419832/Informe-Uvaperuana.pdf

Moura, M. F., Tecchio, M. A., Dias-Arieira, C. R., Puerari, H. H., Cunha, T. P. L. and Chiamolera, F. M. (2014). Reaction of grape rootstocks to Meloidogyne incognita and M. javanica. Acta horticulturae, 1046, 109-112. DOI: https://doi.org/10.17660/Acta

Hortic.2014.1046.12

Ollat, N., Bordenave, L., Tandonnet, J. P., Boursiquot, J. M. and Marguerit, E. (2016). Grapevine rootstocks: origins and perspectives. ActaHorticulturae,1136, 11–22. DOI: https://doi.org/10.17660/ActaHortic.2016.1136.2

Oostenbrick, M. (1966). Major characteristics of the relation between nematodes and plants. Mendelingen / Landbouhogeschool, Wageningen, 66, (1), 46.

Peccoux, A., Loveys, B., Zhu, J., Gambetta, G. A., Delrot, S., Vivin, P., Schultz, H. R., Ollat, N. and Dai, Z. (2018). Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. TreePhysiology, 38(7), 1026-1040. DOI: https://doi.org/10.1093/treephys/tpx153

Perry, R. and Moens, M. (Eds.) (2013). PlantNematology, Secondedition. Wallingford, Oxfordshire, UK: CABI Publishing.

Statistical Analysis System (SAS) (University Edition version) [Software].São Pablo, Brazil: SAS Institute. Retrieved from: https://www.sas.com/pt_br/software/

university-edition/download-software.html

Seccia, A., Santeramo, F. G. and Nardone, G. (2015). Trade competitiveness in table grapes: a global view. Outlook on Agriculture, 44 (2), 127-134. DOI: https://

doi.org/10.5367/oa.2015.0205

Sohrabi, S., Ebadi, A., Jalali, S. and Salami, S. A. (2017). Enhanced values of various physiological traits and VvNAC1 gene expression showing better salinity

stress tolerance in some grapevine cultivars as well as rootstocks. ScientiaHorticulturae, 225, 317–326. DOI: https://doi.org/10.1016/j.scienta.2017.06.025

Somavilla, L., Bauer Gomes, C. and Quecini, M. V. (2012). Registro da ocorrência de Meloidogyne incognita no Porta-Enxerto ‘Iac 766-Campinas’ no Estado De Pernambuco e reação de porta-enxertos e de cultivares copa de videira a Meloidogyne spp. Revista Brasileira de Fruticultura, 34 (3), 750-756. DOI: https://

dx.doi.org/10.1590/S0100-29452012000300014

Téliz, D., Landa, B. B., Rapoport, H. F., Pérez Camacho, F., Jiménez-Díaz, R. M. and Castillo, P. (2007). Plantparasitic nematodes infecting grapevine in Southern

Spain and susceptible reaction to root-knot nematodes of rootstocks reported as moderately resistant. PlantDisease, 91 (9), 1147-1154. DOI: https://doi.org/10.1094/PDIS-91-9-1147

Varas Huaroto, N. (2018). Caracterización de poblaciones peruanas del nematodo del nódulo de la raíz (Meloidogyne spp.) en vid (Vitis vinífera L.). Tesis de maestría no publicada, Universidad Nacional Agraria La Molina, Lima, Perú. Retrieved from: http://repositorio.lamolina.edu.pe/handle/UNALM/3550

Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N. and Gambetta, G. (2016). The influence of grapevine rootstocks on scion growth and drought resistance.

Theoretical and Experimental Plant Physiology, 28 , 143–157. DOI: https://doi.org/10.1007/s40626-016-0070-x