Source-Sink relationship in runner-type peanut cultivars (Arachis hypogaea L.) grown in Argentina

Main Article Content

Federico Daniel Morla
Oscar Giayetto
Elena Mercedes Fernandez
Guillermo Angel Cerioni

Abstract

Assimilate partitioning into reproductive structures is a relevant physiological feature in increasing peanut yield, and its analysis through the source-sink relationship is an important contribution to genetic improvement and crop management. The objective was to analyze the source-sink relationship of runner-type cultivars grown in Argentina. Two field experiments were performed, Exp1 consisted in the analysis of the cultivar Granoleico in three sowing dates during 2009-2010 and 2010-2011. In Exp2, six runner-type cultivars (Florunner, Florman, Manigran, Asem-485, Pepe-Asem and Granoleico) were sown during 2011-2012. The source-sink relationship was analyzed using two methodologies: total biomass assigned to each pod during pod filling period (g pod-1) in relation to its final weight, and analysis of the trade-off between pod number and pod weight at harvest. The lack of trade-off between pod number and weight showed that the peanut plant has conditions to fill a wide number of pods (20-57 pods plant-1) in the same way. Also, the average pod weight (1.05 g) was lower than the total plant biomass assigned to that pod during its formation (2.63 g). A marked limitation by sinks was determined, indicating the possibility of to increase the peanut yield by means of improvements in sinks size.

Downloads

Download data is not yet available.

Article Details

How to Cite
Morla, F. D., Giayetto, O., Fernandez, E. M., & Cerioni, G. A. (2019). Source-Sink relationship in runner-type peanut cultivars (Arachis hypogaea L.) grown in Argentina. AgriScientia, 36(2), 39–44. https://doi.org/10.31047/1668.298x.v36.n2.23599
Section
Articles
Author Biography

Federico Daniel Morla, Departamento de Producción Vegetal, Facultad de Agronomía y Veterinaria – Universidad Nacional de Río Cuarto.

Departamento de Producción Vegetal, Facultad de Agronomía y Veterinaria – Universidad Nacional de Río Cuarto.

References

Boote, K. J. (1982). Growth stages of peanut (Arachis hypogaea L.). Peanut science, 9 (1), 35-40. https://doi.org/10.3146/i0095-3679-9-1-11

Borrás, L., Slafer, G. A. y Otegui, M. E. (2004). Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86 (2), 131-146. https://doi.org/10.1016/j.fcr.2003.08.002

Cantagallo, J. E., Medan, D. y Hall, A. J. (2004). Grain number in sunflower as affected by shading during floret growth, anthesis and grain setting. Field Crops Research, 85 (2), 191-202. https://doi.org/10.1016/S0378-4290(03)00160-6

Cerrudo, A., Di Matteo, J., Fernandez, E., Robles, M., Pico, L. O. y Andrade, F. H. (2013). Yield components of maize as affected by short shading periods and thinning. Crop and Pasture Science, 64 (6), 580-587. https://doi.org/10.1071/CP13201

Duncan, W. G., McCloud, D. E., McGraw, R. L. y Boote, K. J. (1978). Physiological Aspects of Peanut Yield Improvement. Crop Science, 18 (6), 1015-1020. https://doi.org/10.2135/cropsci1978.0011183X001800060028x

Egli, D. B. y Bruening, W. P. (2001). Source-sink relationships, seed sucrose levels and seed growth rates in soybean. Annals of Botany, 88 (2), 235-242. https://doi.org/10.1006/anbo.2001.1449

Fischer, R. A. (1975). Yield Potential in a Dwarf Spring Wheat and the Effect of Shading. Crop Science, 15 (5), 607-613. https://doi.org/10.2135/cropsci1975.0011183X001500050002x

Gambín, B. L. y Borrás, L. (2010). Resource distribution and the trade‐off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology, 156 (1), 91-102. https://doi.org/10.1111/j.1744-7348.2009.00367.x

Gambín, B. L., Borrás, L. y Otegui, M. E. (2006). Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crops Research, 95 (2), 316-326. https://doi.org/10.1016/j.fcr.2005.04.002

Ghosh, A. K. y Biswas, A. K. (1995). Regulation of correlative senescence in Arachis hypogaea L. by source‐sink alteration through physical and hormonal means. Journal of Agronomy and Crop Science, 175 (3), 195-202. https://doi.org/10.1111/j.1439-037X.1995.tb00211.x

Giayetto, O., Morla, F. D., Fernandez, E. M., Cerioni, G. A., Kearney, M., Rosso, M. B. y Violante, M. G. (2013). Temporal analysis of branches pod production in peanut (Arachis hypogaea) genotypes with different growth habits and branching patterns. Peanut Science, 40 (1), 8-14. https://doi.org/10.3146/PS12-10.1

Gifford, R. M. y Evans, L. T. (1981). Photosynthesis, carbon partitioning, and yield. Annual Review of Plant Physiology, 32 (1), 485-509. https://doi.org/10.1146/annurev.pp.32.060181.002413

GraphPad Prism (versión 5.00 para Windows). San Diego, USA: GraphPad Software

Hang, A. N., McCloud, D. E., Boote, K. J. y Duncan, W. G. (1984). Shade effects on growth, partitioning, and yield components of peanuts. Crop Science, 24 (1), 109-115. https://doi.org/10.2135/cropsci1984.0011183X002400010025x

Haro, R. J., Baldessari, J. y Otegui, M. E. (2013). Genetic improvement of peanut in Argentina between 1948 and 2004: Seed yield and its components. Field Crops Research, 149. 76-86. https://doi.org/10.1016/j.fcr.2013.04.021

Haro, R. J., Dardanelli, J. L., Collino, D. J. y Otegui, M. E. (2010). Water deficit and impaired pegging effects on peanut seed yield: links with water and photosynthetically active radiation use efficiencies. Crop and Pasture Science, 61(5), 343-352.https://doi.org/10.1071/CP09234

Haro, R. J., Dardanelli, J. L., Otegui, M. E. y Collino, D. J. (2008). Seed yield determination of peanut crops under water deficit: soil strength effects on pod set, the source–sink ratio and radiation use efficiency. Field Crops Research, 109 (1), 24-33.https://doi.org/10.1016/j.fcr.2008.06.006

Haro, R. J., Otegui, M. E., Collino, D. J. y Dardanelli, J. L. (2007). Environmental effects on seed yield determination of irrigated peanut crops: Links with radiation use efficiency and crop growth rate. Field Crops Research, 103 (3), 217-228. https://doi.org/10.1016/j.fcr.2007.06.004

Hemsy, V., Rodriguez, E. L., Scandaliaris, J., Lozano Muñoz, H. y Cajal, J. A. (1974). Posibilidad de aumentar la producción de maní (Arachis hypogaea L.) controlando la floración. Revista Agronómica Noroeste Argentino, XI (4), 163-178.

Huyghe, C. (1998). Genetics and genetic modifications of plant architecture in grain legumes: a review. Agronomie, 18 (5-6), 383-411. https://doi.org/10.1051/agro:19980505

Morla, F. D., Giayetto, O., Cerioni, G. A. y Fernandez, E. M. (2016). Crecimiento y partición de biomasa de dos cultivares de maní (Arachis hypogaea L.) en distintas fechas de siembra en Río Cuarto, Córdoba (Argentina). European Scientific Journal, 12 (30), 334-352. http://dx.doi.org/10.19044/esj.2016.v12n30p334

Nautiyal, P. C., Ravindra, V., Rathnakumar, A. L., Ajay, B. C. y Zala, P. V. (2012). Genetic variations in photosynthetic rate, pod yield and yield components in Spanish groundnut cultivars during three cropping seasons. Field Crops Research, 125, 83-91. https://doi.org/10.1016/j.fcr.2011.08.010

Senoo, S. y Isoda, A. (2003).Effects of Paclobutrazol on Dry Matter Distribution and Yield in Peanut. Plant production science, 6 (1), 90-94. https://doi.org/10.1626/pps.6.90

Smith, C. C. y Fretwell, S. D. (1974). The optimal balance between size and number of offspring. The American Naturalist, 108 (962), 499-506. https://doi.org/10.1086/282929

Stalker, H. T. (1997). Peanut (Arachis hypogaea L.). Field Crops Research, 53 (1-3), 205-217. https://doi.org/10.1016/S0378-4290(97)00032-4

Venable, D. L. (1992). Size-number trade-offs and the variation of seed size with plant resource status. The American Naturalist, 140 (2), 287-304. https://doi.org/10.1086/285413

Williams, E. J. y Drexler, J. S. (1981). A non-destructive method for determining peanut pod maturity. Peanut Science, 8 (2), 134-141. https://doi.org/10.3146/i0095-3679-8-2-15

Williams, J. H. (1979). The physiology of groundnuts (Arachis hypogaea L. cv. Egret). 3. The effect of thinning at different stages of development on reproductive growth y development. Rhodesian journal of agricultural research, 17 (1), 57-62.