Assessment of land use change in the dryland agricultural region of Córdoba, Argentina, between 2000 and 2020 based on NDVI data
Main Article Content
Abstract
The dryland region of Córdoba province experienced a strong increase in agricultural land-use in the 21st century. Between years 2000 and 2020 the temporal variation of land-use measures derived from the seasonal variation curve of the Normalized Difference Vegetation Index (NDVI) was analyzed. In eleven departments of the region, the following NDVI measurements were
obtained for each crop cycle from September to April: minimum value (NDVIn), maximum value (NDVIx), amplitude (NDVIa=NDVIx-NDVIn) and mean value (NDVIm). The sowing percentage per department was analyzed spatially and temporally, as well as the land use indicators. Both NDVIn and NDVIx are related to the sowing area per department, determining a negative correlation (-0.36) for NDVIn and a positive one (0.596) for NDVIx. The positive correlation with NDVIa (0.569) is considered directly linked to the agricultural land use. The seasonal variation of the NDVI showed changes over time, which were
compatible with the increase in agricultural activity in the region. Although the increase in agricultural land use was noticeable through both the decrease in NDVIn and the increase in NDVIx, along with a general trend towards rising NDVIa values, the variation was more apparent in those departments where agricultural activity increased to a greater proportion.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
Acker, J. G. and Leptoukh, G. (2007). Online analysis enhances use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88, 14-17. https://doi.org/10.1029/2007EO020003
Aramburu Merlos, F., Monzon, J. P., Mercau, J. L., Taboada, M., Andrade, F. H., Hall, A. J., Jobbagy, E., Cassman, K. G., and Grassini, P. (2015). Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Research, 184, 145–154. https://doi.org/10.1016/j.fcr.2015.10.001
Becker-Reshef, I., Vermote, E., Lindeman, M., and Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114, 1312–1323. https://doi.org/10.1016/j.rse.2010.01.010
Bolton, D. K. and Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84. https://doi.org/10.1016/j.agrformet.2013.01.007
Brown, M. E., De Beurs, K. M., and Vrieling, A. (2010). The response of African land surface phenology to large scale climate oscillations. Remote Sensing of Environment, 114, 2286-2296. https://doi.org/10.1016/j.rse.2010.05.005
Chang, J., Hansen, M. C., Pittman, K., Carroll, M., and DiMiceli, C. (2007). Corn and soybean mapping in the United States using MODIS Time-Series data sets. Agronomy Journal, 99, 1654–1664. https://doi.org/10.2134/agronj2007.0170
Censo Nacional Agropecuario (CNA-02). (2002). Instituto Nacional de Estadística y Censos (INDEC). Ciudad Autónoma de Buenos Aires, República Argentina. https://sitioanterior.indec.gob.ar/cna_index.asp
Censo Nacional Agropecuario (CNA-18). (2018). Censo Nacional Agropecuario 2018. Resultados definitivos. Instituto Nacional de Estadística y Censos (INDEC). Ciudad Autónoma de Buenos Aires, República Argentina. https://www.indec.gob.ar/indec/web/Nivel4-Tema-3-8-87
De la Casa, A. and Ovando, G. (2007). Caracterización de la dinámica anual del uso del suelo en sistemas de producción agropecuarios de Córdoba, Argentina, por medio del análisis armónico en series de tiempo de NDVI. Revista de la Facultad de Agronomía (La Plata), 106(2), 155-164.
De la Casa, A. and Nasello, O. (2010). Breakpoints in annual rainfall trends in Córdoba, Argentina. Atmospheric Research, 95, 419–427 https://doi.org/10.1016/j.atmosres.2009.11.005.
De la Casa, A. C. and Ovando, G. G. (2014). Climate change and its impact on agricultural potential in the central region of Argentina between 1941 and 2010. Agricultural and Forest Meteorology, 195–196, 1–11. https://doi.org/10.1016/j.agrformet.2014.04.005
De la Casa, A. C. and Ovando, G. G. (2016). Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. Journal of Hydrology: Regional Studies, 5, 66-79. https://doi.org/10.1016/j.ejrh.2015.11.009
De la Casa, A., Ovando, G., and Díaz, G. (2018). Secular variation of rainfall regime in the central region of Argentina. Atmospheric Research, 213, 196-210. https://doi.org/10.1016/j.atmosres.2018.06.009
De la Casa, A., Ovando, G., Díaz, G., Bressanini, L., and Miranda, C. (2018). Brecha de rendimiento del cultivo de soja estimada con el modelo AquaCrop en la región central de Córdoba, Argentina. Revista Argentina de Agrometeorología, 9, 1-19.
De la Casa, A., Ovando, G., Bressanini, L., Díaz, G., Díaz, P., and Miranda, C. (2019). Evaluación de la brecha de rendimiento para maíz tardío con distintas densidades de siembra en la región central de Córdoba, Argentina. Agriscientia, 36(2), 1-17. https://doi.org/10.31047/1668.298x.v36.n2.23613
De la Casa, A., Ovando, G. and Díaz, G. (2019). Interannual variability of seasonal rainfall in Cordoba, Argentina, evaluated from ENSO and ENSO Modoki signals and verified with MODIS NDVI data. SN Applied Sciences, 1(6), 1624. https://doi.org/10.1007/s42452-019-1650-6
Diao, C. (2020). Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages. Remote Sensing of Environment, 248, 111960. https://doi.org/10.1016/j.rse.2020.111960
Fox, T. A., Rhemtulla, J. M., Ramankutty, N., Lesk, C., Coyle, T. and Kunhamu, T. K. (2017). Agricultural land-use change in Kerala, India: Perspectives from above and below the canopy. Agriculture, Ecosystems & Environment, 245, 1-10. https://doi.org/10.1016/j.agee.2017.05.002
Ghida Daza, C. and Sánchez, C. (2009). Zonas agroeconómicas homogéneas: Córdoba (No. E16/121). Instituto Nacional de Tecnología Agropecuaria (INTA). Retrieved from: https://www.produccion-animal.com.ar/regiones_ganaderas/23-zonas_agroeconomicas_cba.pdf
Guida-Johnson, B. and Zuleta, G. A. (2013). Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agriculture, Ecosystems & Environment, 181, 31-40. https://doi.org/10.1016/j.agee.2013.09.002
González, P. L. M., Goddard, L. and Greene, A. M. (2013). Twentieth-century summer precipitation in southeastern South America: comparison of gridded and station data. International Journal of Climatology, 33(13), 2923–2928. https://doi.org/10.1002/joc.3633
Huete, A., Didan, K., Miura, T., Rodríguez, E. P., Gao, X. and Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
Jayawardhanaa, W. G. N. N. and Chathurange, V. M. I. (2016). Extraction of agricultural phenological parameters of Sri Lanka using MODIS, NDVI time series data. Procedia Food Science, 6, 235–241. https://doi.org/10.1016/j.profoo.2016.02.027
Johnson, D. M. (2014). An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141, 116–128. https://doi.org/10.1016/j.rse.2013.10.027
Jönsson, P. and Eklundh, L. (2004). TIMESAT - A program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30, 833–845. https://doi.org/10.1016/j.cageo.2004.05.006
Liebmann, B., Vera, C. S., Carvalho, L. M. V., Camilloni, I. A., Hoerling, M. P., Allured, D., Barros, V. R., Báez, J. and Bidegain, M. (2004). An observed trend in central South American precipitation. Journal of Climate, 17(22), 4357–4367. https://doi.org/10.1175/3205.1
Liu, J., Huffman, T., Qian, B., Shang, J., Li, Q., Dong, T., Davidson, A. and Jing, Q. (2020). Crop yield estimation in the Canadian Prairies using Terra/MODIS-derived crop metrics. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2685–2697. https://doi.org/10.1109/JSTARS.2020.2984158
Magrin, G. O., Travasso, M. I. and Rodriguez, G. R. (2005). Changes in climate and crop production during the 20th century in Argentina. Climate Change, 72(1-2), 229–249. https://doi.org/10.1007/s10584-005-5374-9
MAGyP (2021). Ministerio de Agricultura, Ganadería y Pesca de la República Argentina. Presidencia de la Nación. Estimaciones agrícolas. Retrieved from https://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones
Minetti, J. L. and Vargas, W. M. (1997). Trends and jumps in the annual precipitation in South America, south of the 15ºS. Atmósfera, 11(4), 205-223.
Nolasco, M., Ovando, G., Sayago, S., Magario, I. and Bocco, M. (2021). Estimating soybean yield using time series of anomalies in vegetation indices from MODIS. International Journal of Remote Sensing, 42(2), 405–421. https://doi.org/10.1080/01431161.2020.1809736
Paruelo, J. M., Guerschman, J. P. and Verón, S. R. (2005). Expansión agrícola y cambios en el uso del suelo. Ciencia hoy, 15(87), 14-23.
Rodríguez, A. R. and De la Casa, A. C. (1990). Regiones hídricas de la República Argentina. Revista de la Facultad de Ciencias Agropecuarias (UNC), 7, 31-40.
Rolla, A. L., Núñez, M. N., Guevara, E. R., Meira, S. G., Rodríguez, G. R. and De Zárate, M. I. O. (2018). Climate impacts on crop yields in Central Argentina. Adaptation strategies. Agricultural Systems, 160, 44-59. https://doi.org/10.1016/j.agsy.2017.08.007
Saeed, U., Dempewolf, J., Becker-Reshef, I., Khan, A., Ahmad, A. and Aftab Wajid, S. (2017). Forecasting wheat yield from weather data and MODIS NDVI using random forests for Punjab province, Pakistan. International Journal of Remote Sensing, 38(17), 4831–4854. https://doi.org/10.1080/01431161.2017.1323282
Sakamoto, T., Wardlow, B. D., Gitelson, A. A., Verma, S. B., Suyker, A. E. and Arkebauer, T. J. (2010). A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 114(10), 2146–2159. https://doi.org/10.1016/j.rse.2010.04.019
Sakamoto, T., Gitelson, A. A. and Arkebauer, T. J. (2014). Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sensing of Environment, 147, 219–231. https://doi.org/10.1016/j.rse.2014.03.008
Sakamoto, T. (2020). Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 208–228. https://doi.org/10.1016/j.isprsjprs.2019.12.012
Sayago, S., Ovando, G. and Bocco, M. (2017). Landsat images and crop model for evaluating water stress of rainfed soybean. Remote Sensing of Environment, 198, 30-39. https://doi.org/10.1016/j.rse.2017.05.008
Seo, B., Lee, J., Lee, K., Hong, S. and Kang, S. (2019). Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA. Field Crops Research, 238, 113–128. https://doi.org/10.1016/j.fcr.2019.03.015
Sierra, E. M., Hurtado, R. H. and Spescha, L. (1994). Corrimiento de las isoyetas anuales medias decenales en la Región Pampeana 1941–1990. Revista Facultad de Agronomía, UBA, 14(2),139-144.
Skakun, S., Vermote, E., Franch, B., Roger, J-C., Kussul, N., Ju, J. and Masek, J. (2019). Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: Incorporating surface reflectance, through phenological fitting, into regression yield models. Remote Sensing, 11(15) 1768. https://doi.org/10.3390/rs11151768
Stepanov, A., Dubrovin, K., Sorokin, A. and Aseeva, T. (2020). Predicting soybean yield at the regional scale using remote sensing and climatic data. Remote Sensing, 12(12), 1936. https://doi.org/10.3390/rs12121936
Sun, D. and Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24), L24406. https://doi.org/10.1029/2007GL031485
Suriano, J. M. and Ferpozzi, L. H. (1993). Inundaciones y sequías en la historia pampeana. Revista de la Sociedad Rural de Jesús María, 77, 20–24.
Udelhoven, T. (2011). TimeStats: A software tool for the retrieval of temporal patterns from global satellite archives. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 310–317. https://doi.org/10.1109/JSTARS.2010.2051942
Ullah, M., Li, J. and Wadood, B. (2020). Analysis of urban expansion and its impacts on land surface temperature and vegetation using RS and GIS. A case study in Xi’an City, China. Earth Systems and Environment, 4, 583–597. https://doi.org/10.1007/s41748-020-00166-6
Verhoef, W. (1996). Application of harmonic analysis of NDVI time series (HANTS). DLO Winand Staring Centre, 19–24.
Viglizzo, E. F., Roberto, Z. E., Filippin, M. C. and Pordomingo, A. J. (1995). Climate variability and agroecological change in the Central Pampas of Argentina. Agriculture, Ecosystems & Environment, 55, 7–16. https://doi.org/10.1016/0167-8809(95)00608-U
Viglizzo, E. F., Lértora, F. A., Pordomingo, A. J., Bernardos, J., Roberto, Z. E. and Del Valle, H. (2001). Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems & Environment, 81, 65–81. https://doi.org/10.1016/S0167-8809(00)00155-9
Viglizzo, E. F., Pordomingo, A. J., Castro, M. G. and Lértora, F. A. (2003). Environmental assessment of agriculture at a regional scale in the Pampas of Argentina. Environmental Monitoring and Assessment, 87, 169–195. https://doi.org/10.1023/A:1024654316879
Viglizzo, E. F. and Frank, F. C. (2006). Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quaternary International, 158, 122–126. https://doi.org/10.1016/j.quaint.2006.05.022
Kumar Oad, V., Dong, X., Arfan, M., Kumar, V., Mohsin, M. S., Saad, S., Lü, H., Azam, M. I. and Tayyab, M. (2020). Identification of shift in sowing and harvesting dates of rice crop (L. Oryza sativa) through remote sensing techniques: A case study of Larkana District. Sustainability, 12(9), 1–15. https://doi.org/10.3390/su12093586
Wan, W., Liu, Z., Li, K., Wang, G., Wu, H. and Wang, Q. (2021). Drought monitoring of the maize planting areas in Northeast and North China Plain. Agricultural Water Management, 245, 106636. https://doi.org/10.1016/j.agwat.2020.106636
Wardlow, B. D. and Egbert, S. L. (2008). Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment, 112(3), 1096–1116. https://doi.org/10.1016/j.rse.2007.07.019
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., Reed, B. C. and Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471–475. https://doi.org/10.1016/S0034-4257(02)00135-9