Effect of the net radiation proxies on maize and soya evapotranspiration estimation using machine learning methods.
Main Article Content
Abstract
Accurate evapotranspiration (ET) estimation is essential for water management in crops, but it is not an easy task. Empirical ET methodologies require precise net radiation (Rn) measurements to obtain accurate results. Nevertheless, Rn measurements are not easy to obtain from meteorological stations. Thus, this study explored the use of machine learning algorithms with two Rn substitutes, to estimate daily ET: the extraterrestrial solar radiation (Ra) and a modelled Rn (RnM). Support Vector Machine (SVM), Kernel Ridge (KR), Decision Tree (DT), Adaptive Boosting (AB), and Multilayer Perceptron (MLP) were applied to model FLUXNET Rn and ET observations. Adaptive Boosting produced the best field Rn measurements (RnO), yielding a Root Mean Square Error of about 16 % of the mean observed Rn. The resulting Rn (AB RnM) was used to model daily crops ET employing the above-mentioned machine learning methods with RnO, AB RnM, and Ra, in conjunction with meteorological variables and the NDVI index. The evaluated methods were suitable to estimate ET, yielding similar errors to those obtained with RnO, when contrasted with ET observations. These results demonstrate that AB and KR are applicable with rutinary meteorological and satellite data to estimate ET.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
Alizamir, M., Kim, S., Kisi, O., and Zounemat-Kermani, M. (2020). A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy, 197, 117239. https://doi.org/10.1016/j.energy.2020.117239
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome, 300(9), D05109.
Anguita, D., Ridella, S., and Rivieccio, F. (2005, July). K-fold generalization capability assessment for support vector classifiers. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2 (pp. 855-858). IEEE. https://doi.org /10.1109/IJCNN.2005.1555964
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214, 1-12. https://doi.org/10.1038/sdata.2018.214
Bisht, G., Venturini, V., Islam, S., and Jiang, L. (2005). Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sensing of Environment, 97(1), 52-67. https://doi.org/10.1016/j.rse.2005.03.014
Carter, C. and Liang, S. (2019). Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 78, 86-92. https://doi.org/10.1016/j.jag.2019.01.020
Chen, J., He, T., Jiang, B., and Liang, S. (2020). Estimation of all-sky all-wave daily net radiation at high latitudes from MODIS data. Remote Sensing of Environment, 245, 111842. https://doi.org/10.1016/j.rse.2020.111842
Chen, Z., Zhu, Z., Jiang, H., and Sun, S. (2020). Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology, 591, 125286. https://doi.org/10.1016/j.jhydrol.2020.125286
Darnell, S. J., Page, D., and Mitchell, J. C. (2007). An automated decision‐tree approach to predicting protein interaction hot spots. Proteins: Structure, Function, and Bioinformatics, 68(4), 813-823. https://doi.org/10.1002/prot.21474
Exterkate, P., Groenen, P. J. F., Heij, C., and van Dijk, D. (2016). Nonlinear forecasting with many predictors using kernel ridge regression. International Journal of Forecasting, 32(3), 736–753. https://doi.org/10.1016/j.ijforecast.2015.11.017
Fan, J., Zheng, J., Wu, L., and Zhang, F. (2021). Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agricultural Water Management, 245, 106547. https://doi.org/10.1016/j.agwat.2020.106547
Food and Agriculture Organization of the United Nations (FAO), International Institute for Applied Systems Analysis (IIASA), ISRIC-World Soil Information, Institute of Soil Science – Chinese Academy of Sciences (ISSCAS), and Joint Research Centre of the European Commission (JRC). (2012).
Harmonized World Soil Database (version 1.2) [Software]. FAO, Rome, Italy and IIASA, Laxenburg, Austria. http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.html?sb=1
García, G. A., Venturini, V., Brogioni, M., Walker, E., and Rodríguez, L. (2019). Soil moisture estimation over flat lands in the Argentinian Pampas region using Sentinel-1A data and non-parametric methods. International Journal of Remote Sensing, 40(10), 3689-3720. https://doi.org/10.1080/01431161.2018.1552813
Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms — A comparative study. Agricultural Water Management, 217, 303-315. https://doi.org/10.1016/j.agwat.2019.03.015
Hargreaves, G. L., Hargreaves, G. H., and Riley, J. P. (1985). Irrigation water requirements for Senegal River basin. Journal of Irrigation and Drainage Engineering, 111(3), 265-275. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:3(265)
Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine learning. The Annals of Statistics, 36(3), 1171-1220. https://doi.org/10.1214/009053607000000677
Jain, S. K., Nayak, P. C., and Sudheer, K. P. (2008). Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes: An International Journal, 22(13), 2225-2234. https://doi.org/10.1002/hyp.6819
Jiang, B., Zhang, Y., Liang, S., Zhang, X., and Xiao, Z. (2014). Surface daytime net radiation estimation using artificial neural networks. Remote Sensing, 6(11), 11031-11050. https://doi.org/10.3390/rs61111031
Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi, V., Zohaib, M. and Choi, M. (2018). Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260-275. https://doi.org/10.1016/j.rse.2017.10.026
Kumar, M., Raghuwanshi, N. S., and Singh, R. (2011). Artificial neural networks approach in evapotranspiration modeling: a review. Irrigation Science, 29(1), 11-25. https://doi.org/10.1007/s00271-010-0230-8
Llasat, M. C. and Snyder, R. L. (1998). Data error effects on net radiation and evapotranspiration estimation. Agricultural and Forest Meteorology, 91(3-4), 209-221. https://doi.org/10.1016/S0168-1923(98)00070-7
Majidi, M., Alizadeh, A., Vazifedoust, M., Farid, A., and Ahmadi, T. (2015). Analysis of the effect of missing weather data on estimating daily reference evapotranspiration under different climatic conditions. Water Resources Management, 29(7), 2107-2124. https://doi.org/10.1007/s11269-014-0782-0
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J. (2011). Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2), 453-469. https://doi.org/10.5194/hess-15-453-2011
Mokhtari, A., Noory, H., and Vazifedoust, M. (2018). Performance of different surface incoming solar radiation models and their impacts on reference evapotranspiration. Water Resources Management, 32(9), 3053-3070. https://doi.org/10.1007/s11269-018-1974-9
Nourani, V., Tajbakhsh, A. D., and Molajou, A. (2019). Data mining based on wavelet and decision tree for rainfall-runoff simulation. Hydrology Research, 50(1), 75-84. https://doi.org/10.2166/nh.2018.049
Ojo, O. S., Adeyemi, B., and Oluleye, D. O. (2021). Artificial neural network models for prediction of net radiation over a tropical region. Neural Computing and Applications, 33(12), 6865-6877. https://doi.org/10.1007/s00521-020-05463-9
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120-145. https://doi.org/10.1098/rspa.1948.0037
Priestley, C. H. B. and Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
Purdy, A. J., Fisher, J. B., Goulden, M. L., Colliander, A., Halverson, G., Tu, K., and Famiglietti, J. S. (2018). SMAP soil moisture improves global evapotranspiration. Remote Sensing of Environment, 219, 1-14. https://doi.org/10.1016/j.rse.2018.09.023
Qiu, R., Liu, C., Cui, N., Wu, Y., Wang, Z., and Li, G. (2019). Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agricultural Water Management, 224, 105755. https://doi.org/10.1016/j.agwat.2019.105755
Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge Regression Learning Algorithm in Dual Variables. In Proceeding 15th International Conference Machine Learning (pp. 1–7).
Schwertman, N. C., Owens, M. A., and Adnan, R. (2004). A simple more general boxplot method for identifying outliers. Computational Statistics and Data Analysis, 47(1), 165-174. https://doi.org/10.1016/j.csda.2003.10.012
Si, Z., Yu, Y., Yang, M., and Li, P. (2020). Hybrid Solar Forecasting Method Using Satellite Visible Images and Modified Convolutional Neural Networks. IEEE Transactions on Industry Applications, 57(1), 5-16. https://doi.org/10.1109/TIA.2020.3028558
Shirazi, M. A., Boersma, L., and Hart, J. W. (1988). A unifying quantitative analysis of soil texture: improvement of precision and extension of scale. Soil Science Society of America Journal, 52(1), 181-190. https://doi.org/10.2136/sssaj1988.03615995005200010032x
Tang, D., Feng, Y., Gong, D., Hao, W., and Cui, N. (2018). Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands. Computers and Electronics in Agriculture, 152, 375-384. https://doi.org/10.1016/j.compag.2018.07.029
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. https://doi.org/10.1029/2000JD900719
Tikhamarine, Y., Malik, A., Pandey, K., Sammen, S. S., Souag-Gamane, D., Heddam, S., and Kisi, O. (2020a). Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm. Environmental Monitoring and Assessment, 192(11), 1-19. https://doi.org/10.1007/s10661-020-08659-7
Tikhamarine, Y., Malik, A., Souag-Gamane, D., and Kisi, O. (2020b). Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environmental Science and Pollution Research, 27(24), 30001-30019. https://doi.org/10.1007/s11356-020-08792-3
Trnka, M., Eitzinger, J., Kapler, P., Dubrovský, M., Semerádová, D., Žalud, Z., and Formayer, H. (2007). Effect of estimated daily global solar radiation data on the results of crop growth models. Sensors, 7(10), 2330-2362. https://doi.org/10.3390/s7102330
Vapnik, V. (1999). The nature of statistical learning theory (2nd Ed.). Springer.
Walker, E. and Venturini, V. (2019). Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine. Remote Sensing Letters, 10(10), 929-938. https://doi.org/10.1080/2150704X.2019.1633487
Wang, Y., Jiang, B., Liang, S., Wang, D., He, T., Wang, Q., Zhao, X., and Xu, J. (2019). Surface Shortwave net radiation estimation from Landsat TM/ETM+ data using four machine learning algorithms. Remote Sensing, 11(23), 2847. https://doi.org/10.3390/rs11232847
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zou, Z.-H., Steinbach, M., Hand, D. J., and Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37. https://doi.org/10.1007/s10115-007-0114-2
Xu, M., Watanachaturaporn, P., Varshney, P. K., and Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322-336. https://doi.org/10.1016/j.rse.2005.05.008
Xu, T., Guo, Z., Xia, Y., Ferreira, V. G., Liu, S., Wang, K., Yao, Y., Zhang, X., and Zhao, C. (2019). Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 578, 124105. https://doi.org/10.1016/j.jhydrol.2019.124105
Yadav, A. K. and Chandel, S. S. (2014). Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772-781. https://doi.org/10.1016/j.rser.2013.08.055
Yamaç, S. S. and Todorovic, M. (2020). Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agricultural Water Management, 228, 105875. https://doi.org/10.1016/j.agwat.2019.105875
You, Y., Demmel, J., Hsieh, C. J., and Vuduc, R. (2018, June). Accurate, fast and scalable kernel ridge regression on parallel and distributed systems. In Proceedings of the 2018 International Conference on Supercomputing (pp. 307-317). https://doi.org/10.1145/3205289.3205290
Zhang, Y., Duchi, J., and Wainwright, M. (2013, June). Divide and conquer kernel ridge regression. In Conference on learning theory (pp. 592-617). PMLR.
Zhang, X., Treitz, P. M., Chen, D., Quan, C., Shi, L., and Li, X. (2017). Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. International Journal of Applied Earth Observation and Geoinformation, 62, 201-214. https://doi.org/10.1016/j.jag.2017.06.010
Zhang, Y., Qin, X., Li, X., Zhao, J., and Liu, Y. (2020). Estimation of Shortwave Solar Radiation on Clear-Sky Days for a Valley Glacier with Sentinel-2 Time Series. Remote Sensing, 12(6), 927. https://doi.org/10.3390/rs12060927