Yield gap assessment for late corn with diffferent seeding densities in the central region of Córdoba, Argentina

Main Article Content

Antonio de la Casa
Gustavo Ovando
Luciano Bressanini
Guillermo Díaz
Pablo Díaz
Cristian Miranda

Abstract

The yield gap (BR) in late corn (December) was evaluated in the central region of Córdoba, Argentina, comparing planting densities (DS) of 6 and 8 pl m-2 using the AquaCrop model. Running the model between 1960 and 2017 required analyzing the consistency of the Penman-Monteith method (PM) to estimate the daily rate of reference evapotranspiration (ETo) using only maximum and minimum temperature records (ETo_PMTxTn), instead of the complete set of 4 fundamental variables. The ETo_PMTxTn values explain approximately 80 % of the variability of those obtained with the complete set of variables. AquaCrop was calibrated by using crop coverage samples, aerial biomass and soil water that were collected in a plot of late corn during the crop season 2015-2016. Three sowing dates were evaluated, 3 fixed and 3 variables, with no significant differences in BR for both DS. A small advance or delay in planting does not represent a decision affecting climate risk condition. While the increase of DS to 8 pl m-2 produced a significant increase in BR, it also presented average effective yields (RR) that are higher than those obtained with 6 pl m-2 for 47 of the 57 crop cycles analyzed.

Article Details

How to Cite
Yield gap assessment for late corn with diffferent seeding densities in the central region of Córdoba, Argentina . (2019). AgriScientia, 36(2), 1-17. https://doi.org/10.31047/1668.298x.v36.n2.23613
Section
Articles

How to Cite

Yield gap assessment for late corn with diffferent seeding densities in the central region of Córdoba, Argentina . (2019). AgriScientia, 36(2), 1-17. https://doi.org/10.31047/1668.298x.v36.n2.23613

References

Abedinpour, M., Sarangi, A., Rajput, T. B. S., Man Singh, Pathak, H., Ahmad, T. (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110, 55–66.doi:10.1016/j.agwat.2012.04.001

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration: Guide-lines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations

Almorox, J, Senatore, A., Quej, V. H., Mendicino, G.(2018). Worldwide assessment of the Penman–Monteith temperature approach for the estimation of monthly reference evapotranspiration. Theoretical and Applied Climatology,131 (1-2),693-703.doi: 10.1007/s00704-016-1996-2

Andrade, F. H., Otegui, M. E., Vega, C. (2000). Intercepted radiation at flowering and kernel number in maize. AgronomyJournal, 92, 92–97. doi:10.2134/agronj2000.92192x

Arbolave, M. R. (2018). Proyecciones 2018/19 para soja, maíz y trigo. Márgenes Agropecuarios, 34(399), 18-21.

Battisti, R., Sentelhas, P. C., Boote, K. J. (2017). Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crops Research, 200, 28–37.doi:10.1016/j.fcr.2016.10.004

Battisti, R., Sentelhas, P. C., Lopes Pascoalino, J. A., Sako, H., de SáDantas, J. P., Ferreira Moraes, M. (2018). Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production, 12 (39), 159-168. doi: 10.1007/s42106-018-0016-0

Cantarero, M. G., Luque, S. F., Rubiolo, O. J. (2000). Efecto de la época de siembra y la densidad de plantas sobre el número de granos y el rendimiento de un híbrido de maíz en la región central de Córdoba (Argentina). AGRISCIENTIA, 17, 3-10.doi:10.31047/1668.298x.v17.n0

Cerliani, C., Esposito, G. P., Morla, F. D., Balboa, G. R., Naville, R. A.(2018). Relación entre la densidad óptima agronómica y el número de granos por planta en maíz (Zea mays L.). European Scientific Journal, 14(9), 1857–7881. doi:10.19044/esj.2018.v14n9p29

Cirilo, A. G. Andrade, F. H. (1994). Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Science, 34 (4), 1039-1043.doi:10.2135/cropsci1994.0011183X003400040037x

Constantin, J., Willaume, M., Murgue, C., Lacroix, B., Therond, O. (2015). The soil-crop models STICS and AqYield predict yield and soil watercontent for irrigated crops equally well with limited data. Agricultural and Forest Meteorology, 206, 55–68.doi:10.1016/j.agrformet.2015.02.011

Cox, W.J. (1996). Whole plant physiological and yield responses of maize to plant density. Agronomy Journal, 88 (3), 489–496.doi:10.2134/agronj1996.00021962008800030022x

Cross, H. Z., Zuber, M. S.(1972). Prediction of flowering dates inmaize based on different methods of estimating thermal units.Agronomy Journal, 64 (3), 351-355.doi:10.2134/agronj1972.00021962006400030029x

Dardanelli, J. D., Bachmeier, O. A., Sereno, R., Gil, R. (1997). Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field CropsResearch, 54 (1), 29–38.doi:10.1016/s0378-4290(97)00017-8

de la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing,146,531-547.doi:10.1016/j.isprsjprs.2018.10.018

de la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Miranda, C., Díaz, G. (2016). Evaluación de un lote de maíz bajo riego y siembra variable con el modelo AquaCrop en Córdoba, Argentina.Revista Argentina de Agrometeorología, 7,1–13.

de la Casa, A. C., Ovando, G. G. (2016). Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. Journal of Hydrology: Regional Studies, 5, 66–79.doi: 10.1016/j.ejrh.2015.11.009

Djaman, K., Tabari, H., Balde, A. B., Diop, L., Futakuchi, K., Irmak, S.(2016). Analyses, calibration and validation of evapotranspiration models to predict grass-reference evapotranspiration in the Senegal River delta. Journal of Hydrology: Regional Studies, 8, 82–94. doi: 10.1016/j.ejrh.2016.06.003

Donohue, R. J., McVicar, T. R., Roderick, M. L. (2010). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journalof Hydrology, 386 (1-4), 186–197.doi:10.1016/j.jhydrol.2010.03.020

FAO (Food and Agriculture Organization of the United Nations). EToCalculator 2012 (versión 3.1). [Programa de cómputo]. Rome, Italy: Land and Water Division, FAO.

Flores-Gallardo, H., Ojeda-Bustamante, W., Flores-Magdaleno, H., Sifuentes-Ibarra, E., Mejía-Saénz, E. (2013). Simulación del rendimiento de maíz (Zea mays L.) en el norte de Sinaloa usando el modelo AquaCrop. Agrociencia, 47 (4), 347–359.ISSN: 1405-3195.Recuperado de: https://www.redalyc.org/articulo.oa?id=30226975004

Friedman, S. P. (2016). Evaluating the role of water availability in determining the yield–plant population density relationship. Soil ScienceSociety of America Journal, 80 (3), 563–578.doi:10.2136/sssaj2015.11.0395

Gilmore, E. C. Jr., Rogers, J. S.(1958). Heat units as a method ofmeasuring maturity in corn. Agronomy Journal, 50 (10), 611-615.doi:10.2134/agronj1958.00021962005000100014x

Grassini, P., Yang, H., Cassman, K. G. (2009). Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions. Agricultural and ForestMeteorology, 149 (8), 1254–1265.doi:10.1016/j.agrformet.2009.02.012

Grassini, P., Thorburn, J., Burr, C., Cassman, K. G. (2011). High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research, 120 (1), 142–150.doi:10.1016/j.fcr.2010.09.012

Heng, L. K., Hsiao, T. C. Evett, S.R. Howell, T.A., Steduto, P. (2009). Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agronomy Journal. Agronomy Journal, 101 (3), 488–498.doi:10.2134/agronj2008.0029xs

Hsiao, T. C., Heng, L. K., Steduto, P., Rojas-Lara, B., Raes, D., Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101, 448–459.doi:10.2134/agronj2008.0218s

Li, J., Xie, R. Z., Wang, K. R., Ming, B., Guo, Y. Q., Zhang, G. Q., Li, S. K. (2015). Variations in maize dry matter, harvest index, and grain yield with plant density. Agronomy Journal, 107 (3),829–834.doi:10.2134/agronj14.0522

Lobell, D. B., Cassman, K. G., Field, C. B. (2009). Crop yield gaps: their importance, magnitude, and causes. Annual Review of Environment and Resources, 34, 179-204. doi: 10.1146/annurev.environ.041008.093740

Irmak, S., Kabenge, I., Skaggs, K. E., Mutiibwa, D. (2012). Trend and magnitude of changes in climate variables and reference evapotranspiration over 116–yr period in the Platte River Basin, Central Nebraska, USA. Journal of Hydrology, 420 (4), 228–244.doi: 10.1016/j.jhydrol.2011.12.006

McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman, S., Dinpashoh, Y. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal ofHydrology, 416-417, 182-205.doi: 10.1016/j.jhydrol.2011.10.024

McMaster, G. S., Wilhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology, 87, 291-300.doi: 10.1016/S0168-1923(97)00027-0

Méndez, M. J., Casagrande, G., Vergara, G. (octubre2014). Balance hídrico del cultivo de maíz en siembras de primavera temprana y tardía en la región semiárida argentina.Documento presentado en laReunión Binacional Uruguay-Argentina de Agrometeorología. Piriápolis, Uruguay.

Raes, D., Steduto, P., Hsiao, T. C., Fereres, E. (2009). AquaCrop-The FAO crop model to predict yield response to water: II Main algorithms and software description. Agronomy Journal, 101, 438–447.doi:10.2134/agronj2008.0140s

Sangoi, L., Gracietti, M. A., Rampazzo, C., Bianchetti, P. (2002). Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 79 (1), 39–51. doi:10.1016/S0378-4290(02)00124-7

Sarlangue, T., Andrade, F. H., Calviño, P. A., Purcell. L. C. (2007). Why do maize hybrids respond differently to variations in plant density? Agronomy Journal, 99, 984–991. doi:10.2134/agronj2006.0205

Steduto, P., Hsiao, T. C., Raes, D., Fereres, E. (2009). AquaCrop– the FAO crop model to simulate yield response towater: I. Concepts and underlying principles. Agronomy Journal, 101 (3), 426–437.doi:10.2134/agronj2008.0139s

Stricevic, R., Cosic, M., Djurovic, N., Pejic, B., Maksimovic, L. (2011). Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. AgriculturalWater Management, 98 (10), 1615–1621.doi:10.1016/j.agwat.2011.05.011

Vicente-Serrano, S. M., Bidegain, M., Tomas-Burguera, M., Dominguez-Castro, F., El Kenawy, A., McVicar, T. R., Azorin-Molina, C., López-Moreno, J. I., Nieto, R., Gimeno, L., Giménez, A. (2017). A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). International Journal of Climatology,38(1), 337–350. doi:10.1002/joc.5179

Willey, R. W., Heath, S. B. (1969). The quantitative relationships between plant population and crop yield. Advances in Agronomy, 21, 281–321. doi:10.1016/S0065-2113(08)60100-5

Willmott, C. J., Robeson, S. M., Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32 (13), 2088–2094.doi: 10.1002/joc.2419