Evaluación del cambio en el uso del suelo en la región agrícola de secano de Córdoba, Argentina entre 2000 y 2020 basado en datos NDVI

Contenido principal del artículo

Antonio de la Casa
Gustavo Ovando
Guillermo Díaz
Pablo Díaz
Fernando Soler
Juan Pablo Clemente

Resumen

La región de secano de la provincia de Córdoba experimentó un fuerte aumento en el uso agrícola del suelo en el siglo XXI. Se analizó la variación entre los años 2000 y 2020 de diferentes medidas relacionadas al uso del suelo derivadas de la curva de variación estacional del Índice de Vegetación de la Diferencia Normalizada (IVDN). En once departamentos de la región se obtuvieron las siguientes mediciones del NDVI de septiembre a abril: mínimo (IVDNn), máximo (IVDNx), amplitud (IVDNa=IVDNx-IVDNn) y valor medio (IVDNm). Se estableció espacial y temporalmente el porcentaje departamental de siembra y del conjunto de indicadores de uso del suelo. Tanto IVDNn como IVDNx están relacionados con la superficie departamental de siembra, determinando una correlación negativa (-0,36) para IVDNn y positiva (0,596) para IVDNx. La correlación positiva con IVDNa (0,569) se considera ligada de manera directa al uso agrícola del suelo. La variación del IVDN muestra cambios a través del tiempo, compatibles con el aumento de la actividad agrícola en la región, que se evidencia tanto por la disminución del IVDNn, el aumento del IVDNx y una tendencia positiva de IVDNa, más evidente en departamentos donde la actividad agrícola incrementó el uso del suelo en mayor proporción.

Detalles del artículo

Cómo citar
Evaluación del cambio en el uso del suelo en la región agrícola de secano de Córdoba, Argentina entre 2000 y 2020 basado en datos NDVI. (2024). AgriScientia, 41(1), 27-43. https://doi.org/10.31047/1668.298x.v41.n1.41276
Sección
Artículos

Cómo citar

Evaluación del cambio en el uso del suelo en la región agrícola de secano de Córdoba, Argentina entre 2000 y 2020 basado en datos NDVI. (2024). AgriScientia, 41(1), 27-43. https://doi.org/10.31047/1668.298x.v41.n1.41276

Referencias

Acker, J. G. and Leptoukh, G. (2007). Online analysis enhances use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88, 14-17. https://doi.org/10.1029/2007EO020003

Aramburu Merlos, F., Monzon, J. P., Mercau, J. L., Taboada, M., Andrade, F. H., Hall, A. J., Jobbagy, E., Cassman, K. G., and Grassini, P. (2015). Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Research, 184, 145–154. https://doi.org/10.1016/j.fcr.2015.10.001

Becker-Reshef, I., Vermote, E., Lindeman, M., and Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114, 1312–1323. https://doi.org/10.1016/j.rse.2010.01.010

Bolton, D. K. and Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84. https://doi.org/10.1016/j.agrformet.2013.01.007

Brown, M. E., De Beurs, K. M., and Vrieling, A. (2010). The response of African land surface phenology to large scale climate oscillations. Remote Sensing of Environment, 114, 2286-2296. https://doi.org/10.1016/j.rse.2010.05.005

Chang, J., Hansen, M. C., Pittman, K., Carroll, M., and DiMiceli, C. (2007). Corn and soybean mapping in the United States using MODIS Time-Series data sets. Agronomy Journal, 99, 1654–1664. https://doi.org/10.2134/agronj2007.0170

Censo Nacional Agropecuario (CNA-02). (2002). Instituto Nacional de Estadística y Censos (INDEC). Ciudad Autónoma de Buenos Aires, República Argentina. https://sitioanterior.indec.gob.ar/cna_index.asp

Censo Nacional Agropecuario (CNA-18). (2018). Censo Nacional Agropecuario 2018. Resultados definitivos. Instituto Nacional de Estadística y Censos (INDEC). Ciudad Autónoma de Buenos Aires, República Argentina. https://www.indec.gob.ar/indec/web/Nivel4-Tema-3-8-87

De la Casa, A. and Ovando, G. (2007). Caracterización de la dinámica anual del uso del suelo en sistemas de producción agropecuarios de Córdoba, Argentina, por medio del análisis armónico en series de tiempo de NDVI. Revista de la Facultad de Agronomía (La Plata), 106(2), 155-164.

De la Casa, A. and Nasello, O. (2010). Breakpoints in annual rainfall trends in Córdoba, Argentina. Atmospheric Research, 95, 419–427 https://doi.org/10.1016/j.atmosres.2009.11.005.

De la Casa, A. C. and Ovando, G. G. (2014). Climate change and its impact on agricultural potential in the central region of Argentina between 1941 and 2010. Agricultural and Forest Meteorology, 195–196, 1–11. https://doi.org/10.1016/j.agrformet.2014.04.005

De la Casa, A. C. and Ovando, G. G. (2016). Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. Journal of Hydrology: Regional Studies, 5, 66-79. https://doi.org/10.1016/j.ejrh.2015.11.009

De la Casa, A., Ovando, G., and Díaz, G. (2018). Secular variation of rainfall regime in the central region of Argentina. Atmospheric Research, 213, 196-210. https://doi.org/10.1016/j.atmosres.2018.06.009

De la Casa, A., Ovando, G., Díaz, G., Bressanini, L., and Miranda, C. (2018). Brecha de rendimiento del cultivo de soja estimada con el modelo AquaCrop en la región central de Córdoba, Argentina. Revista Argentina de Agrometeorología, 9, 1-19.

De la Casa, A., Ovando, G., Bressanini, L., Díaz, G., Díaz, P., and Miranda, C. (2019). Evaluación de la brecha de rendimiento para maíz tardío con distintas densidades de siembra en la región central de Córdoba, Argentina. Agriscientia, 36(2), 1-17. https://doi.org/10.31047/1668.298x.v36.n2.23613

De la Casa, A., Ovando, G. and Díaz, G. (2019). Interannual variability of seasonal rainfall in Cordoba, Argentina, evaluated from ENSO and ENSO Modoki signals and verified with MODIS NDVI data. SN Applied Sciences, 1(6), 1624. https://doi.org/10.1007/s42452-019-1650-6

Diao, C. (2020). Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages. Remote Sensing of Environment, 248, 111960. https://doi.org/10.1016/j.rse.2020.111960

Fox, T. A., Rhemtulla, J. M., Ramankutty, N., Lesk, C., Coyle, T. and Kunhamu, T. K. (2017). Agricultural land-use change in Kerala, India: Perspectives from above and below the canopy. Agriculture, Ecosystems & Environment, 245, 1-10. https://doi.org/10.1016/j.agee.2017.05.002

Ghida Daza, C. and Sánchez, C. (2009). Zonas agroeconómicas homogéneas: Córdoba (No. E16/121). Instituto Nacional de Tecnología Agropecuaria (INTA). Retrieved from: https://www.produccion-animal.com.ar/regiones_ganaderas/23-zonas_agroeconomicas_cba.pdf

Guida-Johnson, B. and Zuleta, G. A. (2013). Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agriculture, Ecosystems & Environment, 181, 31-40. https://doi.org/10.1016/j.agee.2013.09.002

González, P. L. M., Goddard, L. and Greene, A. M. (2013). Twentieth-century summer precipitation in southeastern South America: comparison of gridded and station data. International Journal of Climatology, 33(13), 2923–2928. https://doi.org/10.1002/joc.3633

Huete, A., Didan, K., Miura, T., Rodríguez, E. P., Gao, X. and Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Jayawardhanaa, W. G. N. N. and Chathurange, V. M. I. (2016). Extraction of agricultural phenological parameters of Sri Lanka using MODIS, NDVI time series data. Procedia Food Science, 6, 235–241. https://doi.org/10.1016/j.profoo.2016.02.027

Johnson, D. M. (2014). An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141, 116–128. https://doi.org/10.1016/j.rse.2013.10.027

Jönsson, P. and Eklundh, L. (2004). TIMESAT - A program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30, 833–845. https://doi.org/10.1016/j.cageo.2004.05.006

Liebmann, B., Vera, C. S., Carvalho, L. M. V., Camilloni, I. A., Hoerling, M. P., Allured, D., Barros, V. R., Báez, J. and Bidegain, M. (2004). An observed trend in central South American precipitation. Journal of Climate, 17(22), 4357–4367. https://doi.org/10.1175/3205.1

Liu, J., Huffman, T., Qian, B., Shang, J., Li, Q., Dong, T., Davidson, A. and Jing, Q. (2020). Crop yield estimation in the Canadian Prairies using Terra/MODIS-derived crop metrics. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2685–2697. https://doi.org/10.1109/JSTARS.2020.2984158

Magrin, G. O., Travasso, M. I. and Rodriguez, G. R. (2005). Changes in climate and crop production during the 20th century in Argentina. Climate Change, 72(1-2), 229–249. https://doi.org/10.1007/s10584-005-5374-9

MAGyP (2021). Ministerio de Agricultura, Ganadería y Pesca de la República Argentina. Presidencia de la Nación. Estimaciones agrícolas. Retrieved from https://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones

Minetti, J. L. and Vargas, W. M. (1997). Trends and jumps in the annual precipitation in South America, south of the 15ºS. Atmósfera, 11(4), 205-223.

Nolasco, M., Ovando, G., Sayago, S., Magario, I. and Bocco, M. (2021). Estimating soybean yield using time series of anomalies in vegetation indices from MODIS. International Journal of Remote Sensing, 42(2), 405–421. https://doi.org/10.1080/01431161.2020.1809736

Paruelo, J. M., Guerschman, J. P. and Verón, S. R. (2005). Expansión agrícola y cambios en el uso del suelo. Ciencia hoy, 15(87), 14-23.

Rodríguez, A. R. and De la Casa, A. C. (1990). Regiones hídricas de la República Argentina. Revista de la Facultad de Ciencias Agropecuarias (UNC), 7, 31-40.

Rolla, A. L., Núñez, M. N., Guevara, E. R., Meira, S. G., Rodríguez, G. R. and De Zárate, M. I. O. (2018). Climate impacts on crop yields in Central Argentina. Adaptation strategies. Agricultural Systems, 160, 44-59. https://doi.org/10.1016/j.agsy.2017.08.007

Saeed, U., Dempewolf, J., Becker-Reshef, I., Khan, A., Ahmad, A. and Aftab Wajid, S. (2017). Forecasting wheat yield from weather data and MODIS NDVI using random forests for Punjab province, Pakistan. International Journal of Remote Sensing, 38(17), 4831–4854. https://doi.org/10.1080/01431161.2017.1323282

Sakamoto, T., Wardlow, B. D., Gitelson, A. A., Verma, S. B., Suyker, A. E. and Arkebauer, T. J. (2010). A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 114(10), 2146–2159. https://doi.org/10.1016/j.rse.2010.04.019

Sakamoto, T., Gitelson, A. A. and Arkebauer, T. J. (2014). Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sensing of Environment, 147, 219–231. https://doi.org/10.1016/j.rse.2014.03.008

Sakamoto, T. (2020). Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 208–228. https://doi.org/10.1016/j.isprsjprs.2019.12.012

Sayago, S., Ovando, G. and Bocco, M. (2017). Landsat images and crop model for evaluating water stress of rainfed soybean. Remote Sensing of Environment, 198, 30-39. https://doi.org/10.1016/j.rse.2017.05.008

Seo, B., Lee, J., Lee, K., Hong, S. and Kang, S. (2019). Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA. Field Crops Research, 238, 113–128. https://doi.org/10.1016/j.fcr.2019.03.015

Sierra, E. M., Hurtado, R. H. and Spescha, L. (1994). Corrimiento de las isoyetas anuales medias decenales en la Región Pampeana 1941–1990. Revista Facultad de Agronomía, UBA, 14(2),139-144.

Skakun, S., Vermote, E., Franch, B., Roger, J-C., Kussul, N., Ju, J. and Masek, J. (2019). Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: Incorporating surface reflectance, through phenological fitting, into regression yield models. Remote Sensing, 11(15) 1768. https://doi.org/10.3390/rs11151768

Stepanov, A., Dubrovin, K., Sorokin, A. and Aseeva, T. (2020). Predicting soybean yield at the regional scale using remote sensing and climatic data. Remote Sensing, 12(12), 1936. https://doi.org/10.3390/rs12121936

Sun, D. and Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24), L24406. https://doi.org/10.1029/2007GL031485

Suriano, J. M. and Ferpozzi, L. H. (1993). Inundaciones y sequías en la historia pampeana. Revista de la Sociedad Rural de Jesús María, 77, 20–24.

Udelhoven, T. (2011). TimeStats: A software tool for the retrieval of temporal patterns from global satellite archives. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 310–317. https://doi.org/10.1109/JSTARS.2010.2051942

Ullah, M., Li, J. and Wadood, B. (2020). Analysis of urban expansion and its impacts on land surface temperature and vegetation using RS and GIS. A case study in Xi’an City, China. Earth Systems and Environment, 4, 583–597. https://doi.org/10.1007/s41748-020-00166-6

Verhoef, W. (1996). Application of harmonic analysis of NDVI time series (HANTS). DLO Winand Staring Centre, 19–24.

Viglizzo, E. F., Roberto, Z. E., Filippin, M. C. and Pordomingo, A. J. (1995). Climate variability and agroecological change in the Central Pampas of Argentina. Agriculture, Ecosystems & Environment, 55, 7–16. https://doi.org/10.1016/0167-8809(95)00608-U

Viglizzo, E. F., Lértora, F. A., Pordomingo, A. J., Bernardos, J., Roberto, Z. E. and Del Valle, H. (2001). Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems & Environment, 81, 65–81. https://doi.org/10.1016/S0167-8809(00)00155-9

Viglizzo, E. F., Pordomingo, A. J., Castro, M. G. and Lértora, F. A. (2003). Environmental assessment of agriculture at a regional scale in the Pampas of Argentina. Environmental Monitoring and Assessment, 87, 169–195. https://doi.org/10.1023/A:1024654316879

Viglizzo, E. F. and Frank, F. C. (2006). Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quaternary International, 158, 122–126. https://doi.org/10.1016/j.quaint.2006.05.022

Kumar Oad, V., Dong, X., Arfan, M., Kumar, V., Mohsin, M. S., Saad, S., Lü, H., Azam, M. I. and Tayyab, M. (2020). Identification of shift in sowing and harvesting dates of rice crop (L. Oryza sativa) through remote sensing techniques: A case study of Larkana District. Sustainability, 12(9), 1–15. https://doi.org/10.3390/su12093586

Wan, W., Liu, Z., Li, K., Wang, G., Wu, H. and Wang, Q. (2021). Drought monitoring of the maize planting areas in Northeast and North China Plain. Agricultural Water Management, 245, 106636. https://doi.org/10.1016/j.agwat.2020.106636

Wardlow, B. D. and Egbert, S. L. (2008). Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment, 112(3), 1096–1116. https://doi.org/10.1016/j.rse.2007.07.019

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., Reed, B. C. and Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471–475. https://doi.org/10.1016/S0034-4257(02)00135-9