Fracciones de aceite esencial de laurel obtenidas por destilación molecular con mayor actividad antioxidante y antimicrobiana

Contenido principal del artículo

Ana Judith Lambir Jacobo
María Evangelina Carezzano
Patricia Raquel Quiroga
Nelson Rubén Grosso


Este estudio tuvo como objetivo analizar la composición química, la actividad antioxidante y antimicrobiana del aceite esencial de Laurus nobilis L. (AEL), y sus fracciones obtenidas por destilación molecular de camino corto. De acuerdo con la composición química, puede decirse que el AEL y sus fracciones tienen actividad antioxidante, ya que poseen un alto contenido de fenólico total (FT). La destilación molecular de camino corto se utiliza para separar las fracciones de aceite esencial con mayor actividad antioxidante que el original. El residuo de laurel (RL) exhibió la mayor actividad antioxidante, con valores más altos para los ensayos de la capacidad antioxidante equivalente a trolox con el radical catión ABTS (TEAC-ABTS) y FT. Además, RL tuvo el valor más bajo de IC50-DPPH. Para la actividad antimicrobiana, todos los productos naturales probados ejercieron una acción sobre todos los microorganismos patógenos utilizados. El AEL, así como sus fracciones, mostraron actividad antimicrobiana, bacteriostática o bactericida frente a bacterias Gram positivas y Gram negativas. El AEL y sus fracciones obtenidas por destilación molecular se pueden utilizar como conservantes de alimentos con funciones antimicrobianas y para prevenir oxidaciones. Asimismo, los consumidores consideraron positiva la adición de AEL y sus fracciones en productos alimenticios.


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Lambir Jacobo, A. J., Carezzano, M. E., Quiroga, P. R. ., & Grosso, N. R. (2022). Fracciones de aceite esencial de laurel obtenidas por destilación molecular con mayor actividad antioxidante y antimicrobiana. AgriScientia, 39(1), 105–116.


Adams, R. P. (1989). Identification of Essential Oils by Ion Trap Mass Spectroscopy. Academic Press.

Asensio, C. M., Gallucci, N., de las Mercedes Oliva, M., Demo, M. S. and Grosso, N. R. (2014). Sensory and bio-chemical preservation of ricotta cheese using natural products. International Journal of Food Science and Technology, 49(12), 2692–2702.

Asensio, C. M., Grosso, N. R. and Juliani, R. H. (2015). Quality characters, chemical composition and biological activities of oregano (Origanum spp.) Essential oils from Central and Southern Argentina. Industrial Crops and Products, 63, 203–213.

Asensio, C. M., Quiroga, P. R., Huang, Q., Nepote, V. and Grosso, N. R. (2019). Fatty acids, volatile compounds and microbial quality preservation with an oregano nanoemulsion to extend the shelf life of hake (Merluccius hubbsi) burgers. International Journal of Food Science and Technology, 54(1), 149-160.

Badr, M. M., Badawy, M. E. I. and Taktak, N. E. M. (2021). Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. Journal of Drug Delivery Science and Technology, 65, 102732.

Bordiga, M. and Nollet, L. M. L. (Eds.). (2019). Food Aroma Evolution: During Food Processing, Cooking, and Aging. Taylor & Francis Group.

Borgarello, A. V., Mezza, G. N., Pramparo, M. C. and Gayol, M. F. (2015). Thymol enrichment from oregano essential oil by molecular distillation. Separation and Purification Technology, 153, 60–66.

Carezzano, M. E., Sotelo, J. P., Primo, E., Reinoso, E. B., Paletti Rovey, M. F., Demo, M. S., Giordano, W. F. and Oliva, M. de las M. (2017). Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains. Plant Biology, 19(4), 599–607.

Chizzola R., Michitsch H. and Franz C. (2008). Antioxidative Properties of Thymus vulgaris Leaves: Comparison of Different Extracts and Essential Oil Chemotypes. Journal Agriculture Food Chemistry, 56(16), 6897-6904.

Chmit, M., Kanaan, H., Habib, J., Abbass, M., Mcheik, A. and Chokr, A. (2014). Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pacific Journal of Tropical Medicine, 7(S1), S546–S552.

Cohen, S. M., Eisenbrand, G., Fukushima, S., Gooderham, N. J., Guengerich, F. P., Hecht, S. S., Rietjens, I. M. C. M., Rosol, T. J., Davidsen, J. M., Harman, C. L., Lu, V. and Taylor, S. V. (2021). FEMA GRAS assessment of natural flavor complexes: Origanum oil, thyme oil and related phenol derivative-containing flavoring ingredients. Food and Chemical Toxicology, 155, 112378.

De Sousa, J. P., De Azerêdo, G. A., De Araújo Torres, R., Da Silva Vasconcelos, M. A., Da Conceição, M. L. and De Souza, E. L. (2012). Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. International Journal of Food Microbiology, 154(3), 145-151.

Demo, M., Oliva, M. de las M., López, M. L., Zunino, M. P. and Zygadlo, J. A. (2005). Antimicrobial Activity of Essential Oils Obtained from Aromatic Plants of Argentina. Pharmaceutical Biology, 43(2), 129–134.

Di Rienzo, J. A., Casanoves F., Balzarini M. G., González L., Tablada M. and Robledo C. W. InfoStat (versión 2018) [Software]. Córdoba, Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba.

Djenane, D., Yangüela, J., Gómez, D. and Roncalés, P. (2012). Perspectives on the use of essential oils as antimicrobials against Campylobacter jejuni CECT 7572 in retail chicken meats packaged in microaerobic atmosphere. Journal of Food Safety, 32(1), 37–47.

El, S. N., Karagozlu, N., Karakaya, S. and Sahın, S. (2014). Antioxidant and Antimicrobial Activities of Essential Oils Extracted from Laurus nobilis L. Leaves by Using Solvent-Free Microwave and Hydrodistillation. Food and Nutrition Sciences, 05(02), 97–106.

Fernández, N. J., Damiani, N., Podaza, E. A., Martucci, J. F., Fasce, D., Quiroz, F., Meretta, P. E., Quintana, S., Eguaras, M. J. and Gende, L. B. (2019). Laurus nobilis L. Extracts against Paenibacillus larvae: Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi Journal of Biological Sciences, 26(5), 906-912.

Flamini, G., Tebano, M., Cioni, P. L., Ceccarini, L., Ricci, A. S. and Longo, I. (2007). Comparison between the conventional method of extraction of essential oil of Laurus nobilis L. and a novel method which uses microwaves applied in situ, without resorting to an oven. Journal of Chromatography A, 1143(1–2), 36–40.

Goudjil, M.B., Ladjel, S., Bencheikh, S.E., Zighmi, S. and Hamada, D. (2015). Study of the chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the leaves of Algerian Laurus nobilis Lauraceae. Journal of Chemical and Pharmaceutical Research, 7(1), 379–385.

Grosso, A. L., Asensio, C. M., Nepote, V. and Grosso, N. R. (2018). Antioxidant Activity Displayed by Phenolic Compounds Obtained from Walnut Oil Cake Used for Walnut Oil Preservation. Journal of the American Oil Chemists’ Society, 95(11), 1409–1419.

Hamdo, H. H., Khayata, W. and Al-Assaf, Z. (2014). The Antioxidant Activity of Tocotrienols Compared with Some Synthetic Antioxidant. Pharmacology & Pharmacy, 5(7) 612–619.

Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez Garcia, D. A., Nakamura, C. V. and Dias Filho, B. P. (2002). Screening of Some Plants Used in the Brazilian Folk Medicine for the Treatment of Infectious Diseases. Memorias Do Instituto Oswaldo Cruz, 97(7), 1027–1031.

Horwitz, W. (Ed.). (2010). Official methods of analysis of AOAC International. Agricultural chemicals, contaminants, drugs. AOAC International, 1997.

Jeleń, H. (2012). Food flavors: Chemical, sensory and technological properties. Taylor & Francis Group.

Kaurinovic, B., Popovic, M. and Vlaisavljevic, S. (2010). In Vitro and in Vivo Effects of Laurus nobilis L. Leaf Extracts. Molecules, 15(5), 3378–3390.

Lester, G. E., Lewers, K. S., Medina, M. B. and Saftner, R. A. (2012). Comparative analysis of strawberry total phenolics via Fast Blue BB vs. Folin-Ciocalteu: Assay interference by ascorbic acid. Journal of Food Composition and Analysis, 27(1), 102-107.

Mann, C. M. and Markham, J. L. (1998). A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology, 84(4), 538–544.

Mello da Silveira, S., Luciano, F. B., Fronza, N., Cunha, A., Scheuermann, G. N. and Werneck Vieira, C. R. (2014). Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7°C. LWT - Food Science and Technology, 59(1), 86–93.

Mello da Silveira, S., Cunha Júnior, A., Scheuermann, G. N., Secchi, F. L. and Werneck Vieira, C. R. (2012). Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens. Ciência Rural, 42(7), 1300–1306.

Mezza, G. N., Borgarello, A. V., Grosso, N. R., Fernandez, H., Pramparo, M. C. and Gayol, M. F. (2018). Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chemistry, 242, 9–15.

Nagata, Y. (2003). Odor measurement review, Measurement of Odor Threshold by Triangle Odor Bag Method. Ministery of Environmental Government of Japan, 18, 118-127.

Nielsen, S. S. (2017). Food Analysis Laboratory Manual (5th ed.). Springer Nature.

Olmedo, R. H. and Grosso, N. R. (2019). Oxidative Stability, Affective and Descriptive Sensory Properties of Roasted Peanut Flavored with Oregano, Laurel, and Rosemary Essential Oils as Natural Preservatives of Food Lipids. European Journal of Lipid Science and Technology, 121(5), 1800428.

Olmedo, R. H., Asensio, C. M. and Grosso, N. R. (2015). Thermal stability and antioxidant activity of essential oils from aromatic plants farmed in Argentina. Industrial Crops and Products, 69, 21–28.

Olmedo, R., Nepote, V. and Grosso, N. R. (2014). Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation. Food Chemistry, 156, 212–219.

Ouchikh, O., Chahed, T., Ksouri, R., Taarit, M. Ben, Faleh, H., Abdelly, C., Kchouk, M. E. and Marzouk, B. (2011).The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. Journal of Food Composition and Analysis, 24(1), 103–110.

Peryam, D.R. and Pilgrim, F. J. (1957). Hedonic scale method of measuring food preferences. Food Technology, 11, Suppl., 9-14.

Prieto, M. C., Lapaz, M. I., Lucini, E. I., Pianzzola, M. J., Grosso, N. R. and Asensio, C. M. (2020). Thyme and suico essential oils: promising natural tools for potato common scab control. Plant Biology, 22(1), 81–89.

Quiroga, P. R., Asensio, C. M. and Nepote, V. (2015). Antioxidant effects of the monoterpenescarvacrol, thymol and sabinene hydrate on chemical and sensory stability of roasted sunflower seeds. Journal of the Science of Food and Agriculture, 95(3), 471–479.

Quiroga, P. R., Grosso, N. R and Nepote, V. (2013). Antioxidant Effect of Poleo and Oregano Essential Oil on Roasted Sunflower Seeds. Journal of Food Science, 78(12), S1904-S1012.

Quiroga, P. R., Riveros, C. G., Zygadlo, J. A., Grosso, N. R. and Nepote, V. (2011). Antioxidant activity of essential oil of oregano species from Argentina in relation to their chemical composition. International Journal of Food Science and Technology, 46(12), 2648–2655.

Riveros, C. G., Nepote, V. and Grosso, N. R. (2016). Thyme and basil essential oils included in edible coatings as a natural preserving method of oilseed kernels. Journal of the Science of Food and Agriculture, 96(1), 183–191.

Rocha-Guzmán, N. E., Gallegos-Infante, J. A., González-Laredo, R. F., Ramos-Gómez, M., Rodríguez-Muñoz, M. E., Reynoso-Camacho, R.,

Rocha-Uribe, A. and Roque-Rosales, M. R. (2007). Antioxidant effect of oregano (Lippiaberlandieri v. Shauer) essential oil and mother liquors. Food Chemistry, 102(1), 330–335.

Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M. and Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91(4), 621–632.

Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W. (Eds.). 2017. NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173, National Institute of Standards and Technology, Gaithersburg MD, 20899,

Shahidi, F. (1998). Indicators for evaluation of lipid oxidation and off-flavor development in food. Developments in Food Science, 40(C), 55–68.

Soubra, L., Sarkis, D., Hilan, C. and Verger, P. (2007). Dietary exposure of children and teenagers to benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) in Beirut (Lebanon). Regulatory Toxicology and Pharmacology, 47(1), 68–77.

Taban, A., Saharkhiz, M. J. and Niakousari, M. (2018). Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustainable Chemistry and Pharmacy, 9, 12-18.

Zazharskyi, V. V., Davydenko, P. O, Kulishenko, O. M, Borovik, I. V. and Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169.