El papel del ácido ascórbico en la preservación o degradación de la clorofila en las hojas de avena

Contenido principal del artículo

O. T. Del Longo
A. R. Koroch
V. S. Trippi

Resumen

Cuando segmentos de hojas de avena son incubados en agua, se verifica una mayor pérdida de clorofilas en condiciones de oscuridad que en luz. La adición de ácido ascórbico al medio de incubación invierte este comportamiento, induciendo una menor degradación de clorofilas en oscuridad y un incremento del blanqueo en condiciones de luz. El efecto en luz es acompañado por un aumento en la producción de malondialdehído y en la permeabilidad de membranas, lo que sugiere que la mayor pérdida de clorofilas en luz, inducida por ascorbato, podría estar mediada por radicales libres del oxígeno. La destrucción de clorofilas aisladas incubadas en presencia de los reactivos de Fenton y su prevención con benzoato sugiere que el radical hidroxilo (OH) puede ser el radical implicado. La adición de cicloheximida al medio de incubación impide el blanqueo, sugiriendo la existencia de una vía enzimática de degradación del pigmento. La menor pérdida de clorofilas en oscuridad producida por ascórbico es acompañada por la inactivación de la fenol peroxidasa, enzima que fuera implicada en la destrucción del pigmento. Los resultados sugieren que la aceleración de la pérdida de clorofilas en luz, causada por ácido ascórbico, estaría relacionada al incremento de procesos fotooxidativos

Detalles del artículo

Cómo citar
El papel del ácido ascórbico en la preservación o degradación de la clorofila en las hojas de avena. (1997). AgriScientia, 14, 11-17. https://doi.org/10.31047/1668.298x.v14.n0.2521
Sección
Artículos

Cómo citar

El papel del ácido ascórbico en la preservación o degradación de la clorofila en las hojas de avena. (1997). AgriScientia, 14, 11-17. https://doi.org/10.31047/1668.298x.v14.n0.2521

Referencias

Asada, K., & Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. En D. J. Kyle, C. B. Osmond, & C. J. Arntzen (Eds.), Photoinhibition (pp. 227-287). Elsevier Science Publishers.

Bonet, B., Otero, P., Viana, M., & Herrera, E. (1996). Antioxidant and pro-oxidant effects of vitamin C and flavonoids on LDL oxidation. Abstracts of papers, VIII Bienal Meeting International Society for Free Radical Research, University of Barcelona, Barcelona, Spain, p. 75.

Cadenas, E. (1985). Oxidative stress and formation of excited species. En H. Sies (Ed.), Oxidative Stress (pp. 311-330). Academic Press.

Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 770-773.

Chen, G. X., & Asada, K. (1990). Hydroxyurea and p-aminophenol are the suicide inhibitors of ascorbate peroxidase. Journal of Biological Chemistry, 265, 2775-2781.

Davison, A. J., Kettle, A. J., & Fatur, D. J. (1986). Mechanism of the inhibition of catalase by ascorbate: Roles of active oxygen species, copper, and semidehydroascorbate. Journal of Biological Chemistry, 261, 1193-1200.

Feierabend, J., & Winkelhüsener, T. (1982). Nature of photooxidative events in leaves treated with chlorosis-inducing herbicides. Plant Physiology, 70, 1277-1282.

Haase, G., & Dunkley, W. L. (1969). Ascorbic acid and copper in linoleate oxidation: I-Measurement of oxidation by ultraviolet spectrophotometry and the thiobarbituric acid test. Journal of Lipid Research, 10, 555-560.

Halliwell, B. (1978). Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biology International Reports, 2, 113-128.

Harbour, J. R., & Bolton, J. R. (1978). The involvement of the hydroxyl radical in the destructive photooxidation of chlorophylls in vivo and in vitro. Photochemistry and Photobiology, 28, 231-234.

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198.

Hendry, G. A., Houghton, J. D., & Brown, S. B. (1987). The degradation of chlorophyll: A biological enigma. The New Phytologist, 107, 255-302.

Holden, M. (1965). Journal of the Science of Food and Agriculture, 16, 312-325. (Cited by Cohen, B., Grossman, S., Klein, B., & Pinsky, A. (1985). Pigment bleaching by soybean lipoxygenase type 2 and the effect of specific chemical modifications. Biochimica et Biophysica Acta, 837, 279-287).

Kappus, H. (1985). Lipid peroxidation: Mechanisms, analysis, enzymology, and biological relevance. En H. Sies (Ed.), Oxidative Stress (pp. 273-303). Academic Press.

Kar, R. K., & Choudhuri, M. A. (1987). Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla verticilata. Physiologia Plantarum, 70, 729-734.

Kato, M., & Shimizu, S. (1985). Chlorophyll metabolism in higher plants: VI. Involvement of peroxidase in chlorophyll degradation. Plant and Cell Physiology, 26, 1291-1301.

Kato, M., & Shimizu, S. (1986). Chlorophyll metabolism in higher plants: VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65, 729-735.

Khan, A., & Kolattukudy, P. (1974). Decarboxylation of long-chain fatty acids to alkanes by cell-free preparations of pea leaves (Pisum sativum). Biochemical and Biophysical Research Communications, 61, 1379-1386.

Kitts, D. D. (1997). An evaluation of the multiple effects of the antioxidant vitamins. Trends in Food Science & Technology, 8(6), 198-203.

Leung, H. W., Vang, M. J., & Mavis, R. (1981). The cooperative interaction between vitamin E and vitamin C in suppression of peroxidation of membrane phospholipids. Biochimica et Biophysica Acta, 664, 266-272.

Martinoia, E., Dalling, M. J., & Matile, P. H. (1982). Catabolism of chlorophyll: Demonstration of chloroplast-localized peroxidative and oxidative activities. Zeitschrift für Pflanzenphysiologie, 107, 269-279.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.

Palmieri, S., & Giovinazzi, F. (1982). Ascorbic acid as a negative effector of the peroxidase-catalyzed degradation of indole-3-acetic acid. Physiologia Plantarum, 56, 1-5.

Patterson, C., & Myers, J. (1973). Photosynthetic production of hydrogen peroxide by Anacystis nidulans. Plant Physiology, 51, 104-109.

Pion, C. J. (1981). Effects of cycloheximide and light on leaf senescence in maize and hydrangea. Plant and Cell Physiology, 22, 847-854.

Rooney, M. L. (1983). Ascorbic acid as a photooxidative inhibitor. Photochemistry and Photobiology, 38, 619-621.

Sakaki, T., Kondo, N., & Sugahara, K. (1983). Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: Role of active oxygen. Physiologia Plantarum, 59, 28-34.

Sarkar, U., & Choudhuri, M. A. (1981). Effects of some oxidants and antioxidants on senescence of isolated leaves of sunflower with special reference to glycolate content, glycolate oxidase, and catalase activities. Canadian Journal of Botany, 59, 392-396.

Sies, H. (1985). Oxidative stress: Introductory remarks. En H. Sies (Ed.), Oxidative Stress (pp. 1-7). Academic Press.

Tetley, R. M., & Thimann, K. V. (1974). The metabolism of oat leaves during senescence: I. Respiration, carbohydrate metabolism, and the action of cytokinins. Plant Physiology, 54, 294-303.

Wills, E. D. (1985). The role of dietary components in oxidative stress in tissues. En H. Sies (Ed.), Oxidative Stress (pp. 197-218). Academic Press.

Yen, G.-C., Chen, H.-Y., & Peng, H.-H. (1997). Antioxidant and prooxidant effects of various tea extracts. Journal of Agricultural and Food Chemistry, 45, 30-34.