Effects of chronic nicotine on autoshaping acquisition and extinction
Conteúdo do artigo principal
Resumo
Learning and motivational processes have been central for a modern understanding of tobacco addiction. In particular, there is growing evidence highlighting the importance of incentive motivational processes for the maintenance of tobacco addiction. The present experiment evaluated the effects of chronic nicotine on the incentive value of a natural reward paired with an environmental cue during acquisition and extinction in a Pavlovian autoshaping procedure with rats. We found that chronic administration of a nicotine dose with translational value for human research had an enhancing effect on responding to an environmental cue during late autoshaping acquisition, but there was no evidence that it affected extinction. Our results are consistent with the role of nicotine enhancing the incentive value of stimuli during acquisition on a Pavlovian autoshaping task and suggest future research on the conditions necessary for the expression of nicotine enhancement in Pavlovian autoshaping tasks.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Commons Attribution License, CCAL). Com esta licença, os autores conservam o direito de propriedade sobre artigos mas permitem que qualquer pessoa façam download e distribuam os artigos publicados na RACC sem necessidade da permissão do autor ou editor. Uma última condição é que sempre, e em todos os casos, o autor e a fonte original de publicação (p.e., RACC) sejam citados. Esta licença foi desenvolvido para facilitar o acesso aberto, gratuito e livre a trabalhos originais do arte e ciência.
Como Citar
Referências
Barret, S. T., & Bevins, R. A. (2013). Nicotine enhances operant responding for qualitatively distinct reinforcers under maintenance and extinction conditions. Pharmacology Biochemistry & Behavior, 114-115, 9-15. https://doi.org/10.1016/j.pbb.2013.10.012
Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist, 71(8), 670-679. https://doi.org/10.1037/amp0000059
Bevins, R. A., & Palmatier, M. I. (2004). Extending the role of associative learning processes in nicotine addiction. Behavioral & Cognitive Neuroscience Reviews, 3(3), 143-158. https://doi.org/10.1177/1534582304272005
Boakes, R. (1977). Performance on learning to associate a stimulus with positive reinforcement. In H. Davis & H. Hurwitz (Eds.), Operant-Pavlovian Interactions (1st ed., pp. 67–97). Lawrence Erlbaum Associates. https://doi.org/10.4324/9781003150404
Chaudhri, N., Caggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., & Sved, A. F. (2006). Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology, 184, 353-366. https://doi.org/10.1007/s00213-005-0178-1
Clarke, P. B. S., & Kumar, R. (1983). Characterization of the locomotor stimulant action of nicotine in tolerant rats. British Journal of Pharmacology, 80(3), 587-594. https://doi.org/10.1111/j.1476-5381.1983.tb10733.x
Colaizzi, J. M., Flagel, S. B., Joyner, M. A., Gearhardt, A. N., Stewart, J. L., & Paulus, M. P. (2020). Mapping sign-tracking and goal-tracking onto human behaviors. Neuroscience & Biobehavioral Reviews, 111, 84-94. https://doi.org/10.1016/j.neubiorev.2020.01.018
Corrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology, 99(4), 473-478. https://doi.org/10.1007/BF00589894
Donny, E. C., Chaudhri, N., Caggiula, A. R., Evans-Martin, F. F., Booth, S., Gharib, M. A., Clements, L. A., & Sved, A. F. (2003). Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology, 169(1), 68-76. https://doi.org/10.1007/s00213-003-1473-3
Elias, G. A., Gulick, D., Wilkinson, D. S., & Gould, T. J. (2010). Nicotine and extinction of fear conditioning. Neuroscience, 165(4), 1063-1073. https://doi.org/10.1016/j.neuroscience.2009.11.022
Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: updating actions to habits to compulsions ten years on. Annual Review of Psychology, 67(1), 23-50. https://doi.org/10.1146/annurev-psych-122414-033457
Fudala, P. J., & Iwamoto, E. T. (1986). Further studies on nicotine-induced conditioned place preference in the rat. Pharmacology, Biochemistry & Behavior, 25(5), 1041-1049. https://doi.org/10.1016/0091-3057(86)90083-3
Guy, E. G., & Fletcher, P. J. (2013). Nicotine-induced enhancement of responding for conditioned reinforcement in rats: Role of prior nicotine exposure and α4β2 nicotinic receptors. Psychopharmacology, 225(2), 429-440. https://doi.org/10.1007/s00213-012-2832-8
Guy, E. G. & Fletcher, P. J. (2014). The effects of nicotine exposure during Pavlovian conditioning in rats on several measures of incentive motivation for a conditioned stimulus paired with water. Psychopharmacology, 231(11), 2261-2271. https://doi.org/10.1007/s00213-013-3375-3
Katz, B. R., & Lattal, K. A. (2021). What is an extinction burst?: A case study in the analysis of transitional behavior. Journal of the Experimental Analysis of Behavior, 115(1), 129-140. https://doi.org/10.1002/jeab.642
Kolokotroni, K. Z., Rodgers, R. J., & Harrison, A. A. (2012). Effects of chronic nicotine, nicotine withdrawal and subsequent nicotine challenges on behavioral inhibition in rats. Psychopharmacology, 219(2), 453-468. https://doi.org/10.1007/s00213-011-2558-z
Meyer, P. J., Lovic, V., Saunders, B. T., Yager, L. M., Flagel, S. B., Morrow, J. D., & Robinson, T. E. (2012). Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PloS One, 7(6), e38987. https://doi.org/10.1371/journal.pone.0038987
Murrin, L. C., Ferrer, J. R., Wanyun, Z., & Haley, N. J. (1987). Nicotine administration to rats: Methodological considerations. Life Sciences, 40(17), 1699-1708. https://doi.org/10.1016/0024-3205(87)90020-8
Olausson, P., Jentsch, J. D., & Taylor, J. R. (2003). Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology, 28(7), 1264-1271. https://doi.org/10.1038/sj.npp.1300173
Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology, 171(2), 173-178. https://doi.org/10.1007/s00213-003-1575-y
Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology, 173(1-2), 98-104. https://doi.org/10.1007/s00213-003-1702-9
Ortega, L. A., Norris, J. N., Lopez-Seal, F., Ramos, T., & Papini, M. R. (2014). Correlates of recovery from incentive downshift: A preliminary selective breeding study. International Journal of Comparative Psychology, 27(2), 160-186. https://doi.org/10.46867/ijcp.2014.27.02.12
Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., Liu, X., Booth, S., Gharib, M., Craven, L., & Sved, A. F. (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology, 184(3-4), 391-400. https://doi.org/10.1007/s00213-005-0183-4
Palmatier, M. I., Marks, K. R., Jones, S. A., Freeman, K. S., Wissman, K. M., & Sheppard, A. B. (2013). The effect of nicotine on sign-tracking and goal-tracking in a Pavlovian conditioned approach paradigm in rats. Psychopharmacology, 226(2), 247-259. https://doi.org/10.1007/s00213-012-2892-9
Pichon-Riviere, A., Alcaraz, A., Palacios, A., Rodríguez, B., Reynales-Shigematsu, L. M., Pinto, M., Castillo-Riquelme, M., Peña, E., Osorio, D. I., Huayanay, L., Loza, C., de Miera-Juárez, B. S., Gallegos-Rivero, V., De La Puente, C., Navia-Bueno, M. P., Caporale, J., Roberti, J., Virgilio, A., Augustovski, F., & Bardach, A. (2020). The health and economic burden of smoking in 12 Latin American countries and the potential effect of increasing tobacco taxes: an economic modelling study. The Lancet Global Health, 8(10), e1282-e1294. https://doi.org/10.1016/S2214-109X(20)30311-9
Raiff, B. R., & Dallery, J. (2008). The generality of nicotine as a reinforcer enhancer in rats: Effects on responding maintained by primary and conditioned reinforcers and resistance to extinction. Psychopharmacology, 201(2), 305-314. https://doi.org/10.1007/s00213-008-1282-9
Ramírez, D. A. & Ortega, L. A. (2021). La administración de nicotina aguda retarda la extinción en automoldeamiento pavloviano: un estudio preliminar. Suma Psicológica, 28(1), 37-42. https://doi.org/10.14349/sumapsi.2021.v28.n1.5
Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247-291. https://doi.org/10.1016/0165-0173(93)90013-P
Robinson, T. E., & Flagel, S. B. (2009). Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biological Psychiatry, 65(10), 869-873. https://doi.org/10.1016/j.biopsych.2008.09.006
Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction, 95(8s2), 91-117. https://doi.org/10.1046/j.1360-0443.95.8s2.19.x
Sanderson, E. M., Drasdo, A. L., McCrea, K., & Wonnacott, S. (1993). Upregulation of nicotinic receptors following continuous infusion of nicotine is brain-region-specific. Brain Research, 617(2), 349-352. https://doi.org/10.1016/0006-8993(93)91104-Z
Schwartz, R. D., & Kellar, K. J. (1983). Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science, 220(4593), 214-216. https://doi.org/10.1126/science.6828889
Thomas, B. L., & Papini, M. R. (2001). Adrenalectomy eliminates the extinction spike in autoshaping with rats. Physiology & Behavior, 72(4), 543-547. https://doi.org/10.1016/S0031-9384(00)00448-0
Tian, S., Gao, J., Han, L., Fu, J., Li, C., & Li, Z. (2008). Prior chronic nicotine impairs cued fear extinction but enhances contextual fear conditioning in rats. Neuroscience, 153(4), 935-943. https://doi.org/10.1016/j.neuroscience.2008.03.005
Tomie, A., Grimes, K. L., & Pohorecky, L. A. (2008). Behavioral characteristics and neurobiological substrates shared by Pavlovian sign-tracking and drug abuse. Brain Research Reviews, 58(1), 121-135. https://doi.org/10.1016/j.brainresrev.2007.12.003
Torres, C., Glueck, A. C., Conrad, S. E., Moron, I., & Papini, M. R. (2016). Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission. Neuroscience, 332, 13-25. https://doi.org/10.1016/j.neuroscience.2016.06.041
United States Department of Health and Human Services (2014). The Health Consequences of Smoking: 50 Years of Progress. A Report of the Surgeon General. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. https://www.ncbi.nlm.nih.gov/books/NBK179276/
Wagner, A. R. (1961). Effects of amount and percentage of reinforcement, and number of acquisition trials, on conditioning and extinction. Journal of Experimental Psychology, 62(3), 234-242. https://doi.org/10.1037/h0042251