El rol del vocabulario en la resolución de problemas aritméticos: Un metaanálisis
Contenido principal del artículo
Resumen
El vocabulario se refiere al conocimiento acerca de las palabras que maneja y conoce una persona, y juega un rol importante en el desarrollo y la ejecución de gran cantidad de habilidades cognitivas. El objetivo de este estudio fue evaluar el tamaño del efecto del vocabulario en ambas modalidades, profundidad y amplitud, en las habilidades de resolución de problemas aritméticos. Con este propósito se realizó un meta-análisis sobre 16 estudios relacionados al tema. Se incluyeron estudios posteriores al año 2000, con niños entre 3 y 13 años y sin problemas neurológicos. Los resultados obtenidos mostraron un efecto moderado y significativo del vocabulario, tanto con respecto a la amplitud como a la profundidad del mismo, sobre la resolución de problemas aritméticos de tipo lingüístico. Los resultados también muestran un índice elevado de heterogeneidad, que puede ser explicado por las inconsistencias a la hora de evaluar los constructos.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La RACC aplicará la licencia internacional de atribuciones comunes creativas (Reconocimiento 4.0 Internacional: https://creativecommons.org/licenses/by/4.0/).
Bajo esta licencia, se permite cualquier explotación de la obra, incluyendo la explotación con fines comerciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción. Esta licencia es una licencia libre según la Freedom Defined. La única condición es que siempre y en todos los casos se cite a los autores y a la fuente original de publicación (i.e., RACC). Esta licencia fue desarrollada para facilitar el acceso abierto, gratuito y libre a trabajos originales científicos y artísticos.
Cómo citar
Referencias
Blair, C., Ursache, A., Greenberg, M., & Vernon-Feagans, L. (2015). Multiple aspects of self-regulation uniquely predict mathematics but not letter-word knowledge in the early elementary grades. Developmental Psychology, 51(4), 459–472. doi: 10.1037/a0038813
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111. doi: 10.1002/jrsm.12
Brown, G., & Quinn, R. (2007a). Fraction proficiency and success in algebra: What does the research say? The Australian Mathematics Teacher, 63(3), 23–30. doi: 10.3316/informit.136647932230670
Brown, G., & Quinn, R. (2007b). Investigating the relationship between fraction proficiency and success in algebra. The Australian Mathematics Teacher, 63(4), 8–15. doi: 10.3316/informit.137057857598350
Brownell, R. (2000). Expressive one-word picture vocabulary test manual. Novato, California: Plural Publishing Inc.
Bugden, S., & Ansari, D. (2016). Probing the nature of deficits in the ‘Approximate Number System’ in children with persistent Developmental Dyscalculia. Developmental Science, 19(5), 817–833. doi: 10.1111/desc.12324
Cain, K., & Oakhill, J. (2011). Matthew Effects in Young Readers. Journal of Learning Disabilities, 44(5), 431–443. doi: 10.1177/0022219411410042
Campbell, J. I., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology. General, 130(2), 299–315. doi: 10.1037//0096-3445.130.2.299
Connolly, A. J. (1998). Keymath – Revised. Circle Pines, Minnesota: American Guidance Service.
Cirino, P. T., Tolar, T. D., Fuchs, L. S., & Huston-Warren, E. (2016). Cognitive and numerosity predictors of mathematical skills in middle school. Journal of Experimental Child Psychology, 145, 95–119. doi: 10.1016/j.jecp.2015.12.010
Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology, 106(1), 214–229. doi: 10.1037/a0034097
De Smedt, B., Taylor, J., Archibald, L., & Ansari, D. (2010). How is phonological processing related to individual differences in children’s arithmetic skills? Developmental Science, 13(3), 508–520. doi: 10.1111/j.1467-7687.2009.00897.x
De Vos, T. (2010). Tempotest Automatiseren [Speed Test for Arithmetic Fluency]. Amsterdam: Boom test uitgevers.
Dunn, L. M., & Dunn, D. M. (2007). Peabody picture vocabuary test: Form B. Minneapolis, Minnesota: Pearson.
Dunn, L. M., Dunn, L. M., Whetton, C., & Burley, J. (1997). British Picture Vocabulary Scale II. Windsor, England: NFER-Nelson.
Emmorey, K. D., & Fromkin, V. A. (1992). El léxico mental. En F. Newmayer (Ed.), Panorama de la lingüística moderna de la Universidad de Cambridge. Tomo III: Aspectos psicológicos y biológicos (pp. 151–176). Madrid, España: Visor.
Formoso, J., Injoque-Ricle, I., Jacubovich, S., & Barreyro, J. P. (2017). Cálculo mental en niños y su relación con habilidades cognitivas. Acta de Investigación Psicológica, 7(3), 2766–2774. doi: 10.1016/j.aipprr.2017.11.004
Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of Educational Psychology, 97(3), 493–513. doi: 10.1037/0022-0663.97.3.493
Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., … Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29–43. doi: 10.1037/0022-0663.98.1.29
Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., & Bryant, J. D. (2010a). The contributions of numerosity and domain-general abilities to school readiness. Child Development, 81(5), 1520–1533. doi: 10.1111/j.1467-8624.2010.01489.x
Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., Seethaler, P. M., … Schatschneider, C. (2010b). Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities? Developmental Psychology, 46(6), 1731–1746. doi: 10.1037/a0020662
Gilbert, J. K., & Fuchs, L. S. (2017). Bivariate developmental relations between calculations and word problems: A latent change approach. Contemporary Educational Psychology, 51, 83–98. doi: 10.1016/j.cedpsych.2017.06.008
Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121–151. doi: 10.1016/j.jecp.2004.03.002
Gomes-Koban, C., Simpson, I. C., Valle, A., & Defior, S. (2017). Oral vocabulary training program for Spanish third-graders with low socio-economic status: A randomized controlled trial. PloS ONE, 12(11), e0188157. doi: 10.1371/journal.pone.0188157
Green, S., & Higgins, J. (2006). Cochrane Handbook for Systematic Reviews of Interventions. Estados Unidos: Wiley.
Groen, G., & Resnick, L. B. (1977). Can preschool children invent addition algorithms? Journal of Educational Psychology, 69(6), 645-652. doi: 10.1037/0022-0663.69.6.645
Hornburg, C. B., Schmitt, S. A., & Purpura, D. J. (2018). Relations between preschoolers’ mathematical language understanding and specific numeracy skills. Journal of Experimental Child Psychology, 176, 84–100. doi: 10.1016/j.jecp.2018.07.005
Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145, 147–155. doi: 10.1016/j.actpsy.2013.11.009
Johnson-Laird, P. N. (2006). How we reason. Oxford, Inglaterra: Oxford University Press.
Jordan, N. C., & Hanich, L. B. (2000). Mathematical thinking in second-grade children with different forms of LD. Journal of Learning Disabilities, 33(6), 567–578. doi: 10.1177/002221940003300605
Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85(2), 103–119. doi: 10.1016/S0022-0965(03)00032-8
Kaufman, A. S., & Kaufman, N. L. (1983). Batería de evaluación de Kaufman para niños. Madrid, España: TEA Ediciones.
Kikas, E., Männamaa, M., Kumari, V., & Ulst, T. (2008). The Relationships among Verbal Skills of Primary School Students with Specific Learning Disabilities and a Typically Developing Comparison Group. International Journal of Disability, Development and Education, 55(4), 315–329. doi: 10.1080/10349120802489521
Kleemans, T., Segers, E., & Verhoeven, L. (2018). Role of linguistic skills in fifth-grade mathematics. Journal of Experimental Child Psychology, 167, 404–413. doi: 10.1016/j.jecp.2017.11.012
Langan, D., Higgins, J. P. T., Jackson, D., Bowden, J., Veroniki, A. A., Kontopantelis, E., … Simmonds, M. (2019). A comparison of heterogeneity variance estimators in simulated random‐effects meta‐analyses. Research Synthesis Methods, 10(1), 83–98. doi: 10.1002/jrsm.1316
LeFevre, J. A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults. Journal of Experimental Psychology: Learning Memory and Cognition, 22(1), 216–230. doi: 10.1037/0278-7393.22.1.216
Lonigan, C. J., Wagner, R. K., Torgesen J. K., & Rashotte, C. A (2007). Test of Preschool Early Literacy (TOPEL). Austin, Texas: Pro-Ed.
Männamaa, M., Kikas, E., Peets, K., & Palu, A. (2012). Cognitive correlates of math skills in third-grade students. Educational Psychology, 32(1), 21–44. doi: 10.1080/01443410.2011.621713
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224–1237. doi: 10.1111/j.1467-8624.2011.01608.x
Múñez, D., Orrantia, J., & Rosales, J. (2013). The effect of external representations on compare word problems: Supporting mental model construction. The Journal of Experimental Education, 81(3), 337-355. doi: 10.1080/00220973.2012.715095
Oakhill, J. V., & Cain, K. (2012). The Precursors of Reading Ability in Young Readers: Evidence From a Four-Year Longitudinal Study. Scientific Studies of Reading, 16(2), 91–121. doi: 10.1080/10888438.2010.529219
Oakhill, J., Cain, K., & McCarthy, D. (2015). Inference processing in children: the contributions of depth and breadth of vocabulary knowledge. En E. O’Brien, A. Cook, & R. Lorch Jr. (Eds.), Inferences during Reading (pp. 140–159). Cambridge: Cambridge University. doi: 10.1017/cbo9781107279186.008
Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103–1112. doi: 10.1037/a0029472
Ostad, S. A. (2000). Cognitive subtraction in a developmental perspective: Accuracy, speed-of-processing and strategy-use differences in normal and mathematically disabled children. Focus on Learning Problems in Mathematics, 22(2), 18–32.
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013–2019. doi: 10.1177/0956797613482944
Perfetti, C., & Hart, L. (2002). The lexical quality hypothesis. En L. Verhoeven, C. Elbro, & P. Reitsma (Eds.), Precursors of Functional Literacy (pp.189-213). Amsterdam, Países Bajos: John Benjamin Publishing Co. doi: 10.1075/swll.11.14per
Pina, V., Fuentes, L. J., Castillo, A., & Diamantopoulou, S. (2014). Disentangling the effects of working memory, language, parental education, and non-verbal intelligence on children’s mathematical abilities. Frontiers in Psychology, 5, 415. doi: 10.3389/fpsyg.2014.00415
Purpura, D. J., & Ganley, C. M. (2014). Working memory and language: Skill-specific or domain-general relations to mathematics? Journal of Experimental Child Psychology, 122(1), 104–121. doi: 10.1016/j.jecp.2013.12.009
Purpura, D. J., Hume, L. E., Sims, D. M., & Lonigan, C. J. (2011). Early literacy and early numeracy: The value of including early literacy skills in the prediction of numeracy development. Journal of Experimental Child Psychology, 110(4), 647–658. doi: 10.1016/j.jecp.2011.07.004
Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology (HOVE), 67(2), 271–280. doi: 10.1080/17470218.2013.803581
Sesma, H. W., Mahone, E. M., Levine, T., Eason, S. H., & Cutting, L. E. (2009). The contribution of executive skills to reading comprehension. Child Neuropsychology, 15(3), 232–246. doi: 10.1080/09297040802220029
Seethaler, P. M., Fuchs, L. S., Fuchs, D., & Compton, D. L. (2012). Predicting first graders’ development of calculation versus word-problem performance: The role of dynamic assessment. Journal of Educational Psychology, 104(1), 224–234. doi: 10.1037/a0024968
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Infants Show Ratio-dependent Number Discrimination Regardless of Set Size. Infancy, 18(6), 927–941. doi: 10.1111/infa.12008
Strasser, K., & del Río, F. (2014). The Role of Comprehension Monitoring, Theory of Mind, and Vocabulary Depth in Predicting Story Comprehension and Recall of Kindergarten Children. Reading Research Quarterly, 49(2), 169–187. doi: 10.1002/rrq.68
Thevenot, C. (2010). Arithmetic word problem solving: Evidence for the construction of a mental model. Acta Psychologica, 133(1), 90-95. doi: 10.1016/j.actpsy.2009.10.004
Thevenot, C. (2017). Arithmetic Word Problem Solving: The Role of Prior Knowledge. En D. C. Geary, D. B. Berch, R. J. Ochsendorf, & K. M. Koepke (Eds.), Mathematical Cognition and Learning, Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts (pp. 47–66). Cambridge, EEUU: Academic Press. doi: 10.1016/B978-0-12-805086-6.00003-5
Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., … Salanti, G. (2016). Methods to estimate the between-study variance and its uncertainty in meta-analysis. Research Synthesis Methods, 7(1), 55–79. doi: 10.1002/jrsm.1164
Von Hippel, P. T. (2015). The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Medical Research Methodology, 15, 35. doi: 10.1186/s12874-015-0024-z
Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive Test of Phonological Processing (CTOPP). Austin, Texas: Pro-Ed.
Wechsler, D. (1994). Test de inteligencia para niños WISC-III, Manual. Buenos Aires, Argentina: Paidós.
Wechsler, D. (1999). Wechsler Abbreviated Scales of Intelligence: WASI. San Antonio, Texas: Psychological Corporation.
Wechsler, D. (2005). Wechsler Individual Achievement Test-Second UK Edition. Oxford, England: Harcourt Assessment.
Wechsler, D. (2012). Test de inteligencia para niños WISC-IV. Buenos Aires, Argentina: Paidós.
Wiig, E. H., Secord, W., & Semel, E. M. (2004). CELF-Preschool 2: Clinical evaluation of language fundamentals-preschool. San Antonio, Texas: Pearson/Psychological Corporation.
Wilkinson, G. S. (1993). Wide range achievement 3. Wilmington, Delaware: Wide Range.
Woodcock, R. W. (1997). Woodcock Diagnostic Reading Battery. Itasca, IL: Riverside Publishing.
Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock– Johnson III. Itasca, IL: Riverside Publishing.