Mecanicismo, Pluralismo Explicativo y Explicación de Codificación Eficiente en Neurociencia

Contenido principal del artículo

Sergio Daniel Barberis

Resumen

Hay un debate creciente en la comunidad filosófica acerca de la unidad y la diversidad de la explicación en neurociencia. La nueva filosofía mecanicista sostiene que la neurociencia exhibe una unidad de mosaico, según la cual los modelos provenientes de múltiples campos científicos contribuyen a la explicación mecanicista colectiva de un fenómeno explanandum ? mediante el establecimiento de restricciones causales sobre el espacio de mecanismos posibles para ?. Los filósofos no mecanicistas admiten la relevancia (incluso la centralidad) de la investigación mecanicista, pero enfatizan la pluralidad y la diversidad de los programas de explicación en neurociencia. En este artículo argumento, en primer lugar, que el tipo de pluralismo explicativo que muchos filósofos no mecanicistas defienden —lo que llamo el “pluralismo causalmente restringido”— no es una alternativa genuina al mecanicismo. Luego, presento una interpretación liberalizada del pluralismo explicativo, según la cual existen modelos en neurociencia que contribuyen a la explicación colectiva de un fenómeno ? pero que no pretenden establecer restricciones causales sobre el espacio de mecanismos posibles para ?. Finalmente, reseño un programa de explicación en neurociencia, a saber, la explicación de codificación eficiente, que se entiende de manera más adecuada mediante la interpretación liberalizada del pluralismo.

Detalles del artículo

Cómo citar
Mecanicismo, Pluralismo Explicativo y Explicación de Codificación Eficiente en Neurociencia. (2017). Revista Argentina De Ciencias Del Comportamiento, 9(1), 9-18. https://doi.org/10.32348/1852.4206.v9.n1.14650
Sección
Artículos Originales
Biografía del autor/a

Sergio Daniel Barberis, Universidad de Buenos Aires

Ayudante de 1era en las materias "Metafísica" y "Problemas de Metafísica", UBA, FFyL, Departamento de Filosofía. Ayudante de 1era en las materias "Filosofía de la Ciencia" y "Filosofía especial de la Ciencia", UBA, FFyL, Departamento de Filosofía.

Cómo citar

Mecanicismo, Pluralismo Explicativo y Explicación de Codificación Eficiente en Neurociencia. (2017). Revista Argentina De Ciencias Del Comportamiento, 9(1), 9-18. https://doi.org/10.32348/1852.4206.v9.n1.14650

Referencias

Abney, D., Dale, R., Yoshimi, J., Kello, Ch., Tylén, K., Fusaroli, R. (2014) “Joint perceptual decision-making: a case study in explanatory pluralism”, Frontiers in Psychology, 5, 330, p. 1-12.

Barros, B. (2008) “Natural selection as a mechanism”, Philosophy of Science, 75(3), pp. 306-322

Batterman, R. (2002) The devil in the details, Oxford: Oxford University Press.

Bechtel, W. (2008) Mental Mechanisms: Philosophical perspective on cognitive neuroscience, New York: Routledge.

Bickle, J. (2006) “Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience”, Synthese, 151, pp. 411-434.

Boone, W. and Piccinini, G. (2015) “The cognitive neuroscience revolution”, Synthese, 193(5), pp 1509-1534.

Piccinini, G. y Boone, T. (2016) “Mechanistic Abstraction”, Philosophy of Science, online first.

Abney, D., Dale, R., Yoshimi, J., Kello, Ch., Tylén, K., & Fusaroli, R. (2014). Joint perceptual decision-making: a case study in explanatory pluralism. Frontiers in Psychology, 5(330), 1-12.

Batterman, R. (2002). The devil in the details. Oxford: Oxford University Press.

Bechtel, W. (2008). Mental Mechanisms: Philosophical perspective on cognitive neuroscience. New York: Routledge.

Bechtel, W., & Abrahamsen, A. (2005). Explanation: A Mechanistic Alternative. Studies in History and Philosophy of the Biological and Biomedical Sciences, 36, 421-441.

Boone, W., & Piccinini, G. (2016a). The cognitive neuroscience revolution. Synthese, 193(5), 1509-1534.

Boone, W., & Piccinini, G. (2016b). Mechanistic abstraction. Philosophy of Science, 83(5), 686-697.

Caddick, S., Carandini, M., Hausser, M., Martin, K., Priebe, N., Reynolds, … Yokoyama, C. (2009). Physiology: Mechanisms. In D. Heegger, E. Simoncelli, J. Reynolds, & M. Carandini (Eds.), Canonical neural computation: a summary and a roadmap (pp. 8-12). Recovered from: http://www.theswartzfoundation.org/docs/Canonical-Neural-Computation-April-2009.pdf

Carandini, M., & Heeger, D. (2012). Normalization as a canonical neural computation. Nature Neuroscience, 13, 51-62.

Chirimuuta, M. (2014). Minimal Models and Canonical Neural Computations: The Distinctness of Computational Explanation in Neuroscience. Synthese, 191, 127-153.

Chirimuuta, M. (forthcoming). Explanation in computational neuroscience: causal and non-causal.

Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT Press.

Clatworthy, P., Chirimuuta, M., Lauritzen, J., & Tolhurst, D. (2003). Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1). Vision Research, 43, 1983-2001.

Craver, C. (2006). When mechanistic models explain. Synthese, 28(2), 141-163.

Craver, C. (2007). Explaining the Brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Clarendon.

Craver, C. (2009). Mechanisms and natural kinds. Philosophical Psychology, 22, 575-594.

Craver, C. (2015). The ontic account of scientific explanation. In M. Kaiser, O. Scholz, D. Plenge, & A. Hüttemann (2015) Explanation in the Special Sciences: The case of biology and history (pp. 27-52). Dordretch: Springer.

Dale, R., Dietrich, E., & Chemero, A. (2009). Explanatory Pluralism in Cognitive Science. Cognitive Science, 33, 739-742.

Darden, L., & Maull, N. (1977). Interfield theories. Philosophy of Science, 44, 43-64.

Dayan, P., & Abbott, L. (2005). Theoretical Neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.

Feyerabend, P. (1975). Against method: Outline of an anarchistic theory of knowledge. London: New Left Books.

Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(3), S342-S353.

Glennan, S. (2010). Mechanisms, Causes, and the Layered Model of the World. Philosophy and Phenomenological Research, 81, 362–381.

Harris, C., & Wolpert, D. (2006). The main sequence of saccades optimizes speed-accuracy trade-off. Biological Cybernetics, 95(1), 25-29.

Heeger, D. (1992). Normalization of cell responses in the cat striate cortex. Visual Neuroscience, 9, 181-197.

Krickel, B. (forthcoming). A regularist approach to mechanistic type-level explanation.

Lange, M. (2013). What makes a scientific explanation distinctively mathematical?. British Journal for the Philosophy of Science, 64, 485-511.

Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421-431.

Levy, A. (2013). What was Hodgkin and Huxley’s Achievement. British Journal for the Philosophy of Science, 65, 469-492.

Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 57, 1-25.

Marr, D. (1982). Vision. San Francisco, CA: Freeman Press.

Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501-1506.

Nagel, E. (1961). The structure of science. Problems in the Logic of Scientific Explanation. New York: Harcourt, Brace and World, Inc.

Oppenheim, O., & Putnam, H. (1958). Unity of Science as a Working Hypothesis. In H. Feigl, M. Scriven, & G. Maxwell (Eds.). Concepts, Theories and the Mind-Body Problem, Minnesota Studies in the Philosophy of Science II (pp. 3-36). Minneapolis: University of Minnesota Press.

Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501-526.

Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283-311.

Pincock, C. (2012). Mathematical and Scientific Representation. Oxford: Oxford University Press.

Ramón y Cajal, S. (1909). Histology of the Nervous System of Man and Vertebrates. Oxford: Oxford University Press.

Rosen, R. (1967). Optimality Principles in Biology. US: Springer.

Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.

Sundaram, R. (1996). A First Course in Optimization Theory. Cambridge: Cambridge University Press.

Thagard, P. (2003). Pathways to biomedical discovery. Philosophy of science, 70(2), 235-254.

Weisberg, M. (2006). Forty years of ‘The Strategy’. Biology and Philosophy, 21(5), 623-645.

Weisberg, M. (2007). Three kinds of idealization. Journal of Philosophy, 104(2), 639-659.

Weiskopf, D. (2011). Models and mechanisms in psychological explanation. Synthese 183, 313-338.

Woodward, J. (2003). Making things happen: a theory of causal explanation. Oxford: Oxford University Press.

Wright, C. (2012). Mechanistic explanation without the ontic conception. European Journal of Philosophy of Science, 2(3), 375-394.

Wright, C., & Bechtel, W. (2007). Mechanisms and psychological explanation. In P. Thagard (Ed.), Philosophy of Psychology and Cognitive Science (pp. 31-79). New York: Elsevier.