Conditional self-discrimination of the subjective night and day in Wistar and Sprague-Dawley rats

Main Article Content

Paris Barbachano Montero
Julio C. Penagos-Corzo
Andres M. Pérez Acosta

Abstract

Conditional self-discrimination is defined as a type of stimulus control in which discriminative stimulus is some aspect of the same individual, subsequently associated with an arbitrary stimulus. This capacity is neither exclusively human nor exclusively verbal. In this study, conditional self-discrimination of subjective day/night was explored in Sprague-Dawley and Wistar rats. For this purpose, one experiment was designed in which discriminative stimulus was the natural internal state of the organism with respect to day and night. It was found that both strains are able to discriminate subjective night but not subjective day. No significant differences were found between the strains. Results are discussed mainly in terms of the nocturnal nature of rats and the difficulty of the task.

Article Details

How to Cite
Conditional self-discrimination of the subjective night and day in Wistar and Sprague-Dawley rats. (2017). Argentinean Journal of Behavioral Sciences, 9(1), 34-43. https://doi.org/10.32348/1852.4206.v9.n1.15197
Section
Original Articles
Author Biographies

Paris Barbachano Montero, Universidad de las Américas

Paris Barbachano Montero estudió su licenciatura en psicología en la Universidad de las Américas Puebla.

Cuenta con una extensa experiencia en investigación científica, pues en el 2013 y en el 2014 Paris Barbachano participó cómo Asistente de investigación en el Instituto de Fisiología de la Benemérita Universidad Autónoma de Puebla. Incluso ha trabajado como psicoterapeuta en el Hospital Psiquiátrico Casa de la Salud.

Julio C. Penagos-Corzo, Universidad de las Américas

Profesor de Tiempo Completo, Departamento de Psicología

Andres M. Pérez Acosta, Universidad del Rosario

Profesor Titular, Programa de Psicología, Escuela de Medicina y Ciencias de la Salud

How to Cite

Conditional self-discrimination of the subjective night and day in Wistar and Sprague-Dawley rats. (2017). Argentinean Journal of Behavioral Sciences, 9(1), 34-43. https://doi.org/10.32348/1852.4206.v9.n1.15197

References

Abe, M., Herzog, E. D., Yamazaki, S., Straume, M., Tei, H., Sakaki, Y., & ... Block, G. D. (2002). Circadian rhythms in isolated brain regions. The Journal of Neuroscience, 22(1), 350-356.

Abe, H., Honma, S., Shinohara, K., & Honma, K. I. (1995). Circadian modulation in photic induction of Fos-like immunoreactivity in the suprachiasmatic nucleus cells of diurnal chipmunk, Eutamias asiaticus. Journal of Comparative Physiology, A. Sensory, Neural, and Behavioral Physiology, 176(2), 159-167.

Aslani, S., Harb, M. R., Costa, P. S., Almeida, O. X., Sousa, N., & Palha, J. A. (2014). Day and night: Diurnal phase influences the response to chronic mild stress. Frontiers in Behavioral Neuroscience, 8 doi: 10.3389/fnbeh.2014.00082.

Beninger, R. J., Kendall, S. B., & Vanderwolf, C. H. (1974). The ability of rats to discriminate their own behaviours. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 28(1), 79-91.

Borbély, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1(3), 195-204.

Borbély, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. Journal of Biological Rhythms, 14(6), 557-568.

Coindet, J., Chouvet, G., & Mouret, J. (1975). Effects of lesions of the suprachiasmatic nuclei on paradoxical sleep and slow wave sleep circadian rhythms in the rat. Neuroscience Letters, 1(4), 243-247. doi: 10.1016/0304-3940(75)90068-3.

Dardente, H., Menet, J. S., Challet, E., Tournier, B. B., Pévet, P., & Masson-Pévet, M. (2004). Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Molecular Brain Research, 124(2), 143-151. doi: 10.1016/j.molbrainres.2004.01.010.

Dattolo, T., Coomans, C. P., van Diepen, H. C., Patton, D. F., Power, S., Antle, M. C., & ... Mistlberger, R. E. (2016). Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal. Neuroscience, 315, 91-103. doi: 10.1016/j.neuroscience.2015.12.014.

Dijk, D. J., & Czeisler, C. A. (1994). Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neuroscience Letters, 166(1), 63-68.

Dymond, S., & Bames, D. (1997). Behavior analytic approaches to self-awareness. The Psychological Record, 47, 181-200.

Eastman, C. I., Mistlberger, R. E., & Rechtschaffen, A. (1984). Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiology & Behavior, 32(3), 357-368.

Epstein, R., Lanza, R. P., & Skinner, B. F. (1981). "Self-awareness" in the pigeon. Science, 212(4495), 695-696. doi: 10.1126/science.212.4495.695.

Fabbro, F., Aglioti, S. M., Bergamasco, M., Clarici, A., & Panksepp, J. (2015). Evolutionary aspects of self- and world consciousness in vertebrates. Frontiers in Human Neuroscience, 9157. doi:10.3389/fnhum.2015.00157.

Gerstner, J. R., & Yin, J. C. (2010). Circadian Rythms and Memory Formation. Nature Reviews. Neuroscience, 11(8), 577-588. doi: 10.1038/nrn2881.

Giraldeau, L. A. (1997). The ecology of information use. In: J. R. Krebs, & N. B. Davis (Eds.), Behavioural Ecology: An evolutionary approach (fourth edition, pp. 42-68). Malden, MA: Blackwell Publishing.

Gökçek-Saraç, Ç., Wesierska, M., & Jakubowska-Do?ru, E. (2015). Comparison of spatial learning in the partially baited radial-arm maze task between commonly used rat strains: Wistar, Sprague-Dawley, Long-Evans, and outcrossed Wistar/Sprague-Dawley. Learning & Behavior, 43(1), 83-94. doi: 10.3758/s13420-014-0163-9.

Hauber, W., & Bareiss, A. (2001). Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: selective enhancement of reference memory retention during the light period. Behavioural Brain Research, 118(1), 43–52.

Hermosillo, C., Penagos-Corzo, J. C., & Pérez-Acosta, A. M. (2011). Differences in conditional self-discrimination between Wistar and Sprague-Dawley strains. Revista Interamericana de Psicología, 45(3), 449-456.

Hofstetter, J., Suckow, M. A., & Hickman, D. L. (2006). Morphophysiology. In M. A. Suckow, S. H. Weisbroth, & C. L. Franklin (Eds.), The laboratory rat (pp. 93-126). Bulington, MA: Elsevier Academic Press.

Hut, R., & Beersma, D. G. M. (2011). Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philosophical Transactions of the Royal Society, B: Biological Sciences, 366(1574), 2141-2154. doi: 10.1098/rstb.2010.0409.

Jakubowski, M., & Joseph, T. (1985). Incidence of Pup Killing and Parental Behavior in Virgin Female and Male Rats (Rattus norvegicus): Differences Between Wistar and Sprague-Dawley Stocks. Journal of Comparative Psychology, 99(1), 93-97. doi: 10.1037/0735-7036.99.1.93.

Jansen, H. T., Sergeeva, A., Stark, G., & Sorg, B. A. (2012). Circadian discrimination of reward: Evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat. Chronobiology International, 29(4), 454-468. doi: 10.3109/07420528.2012.667467.

Katona, C., Rose, S., & Smale, L. (1998). The expression of Fos within the suprachiasmatic nucleus of the diurnal rodent Arvicanthis niloticus. Brain Research, 791(1-2), 27-34.

Kononen, J., Koistinaho, J., & Alho, H. (1990). Circadian rhythm in c-Fos-like immunoreactivity in the rat brain. Neuroscience Letters, 120(1), 105-108. doi: 10.1016/0304-3940(90)90179-D.

Kuhlman, S. J., Mackey, S. R. & Duffy, J. F. (2007). Biological Rythms Workshop I: introduction to chronobiology. Cold Spring Harbor Symposia on Quantitative Biology, 72, 1-6. doi: 10.1101/sqb.2007.72.059.

Landry, G. J., Opiol, H., Marchant, E. G., Pavlovski, I., Mear, R. J., Hamson, D. K., & Mistlberger, R. E. (2012). Scheduled Daily Mating Induces Circadian Anticipatory Activity Rhythms in the Male Rat. PLoS ONE, 7(7), e40895. doi: 10.1371/journal.pone.0040895.

Lubinski, D., & Thompson, T. (1987). An animal model of the interpersonal communication of interoceptive (private) states. Journal of the Experimental Analysis of Behavior, 48(1), 1-15. doi: 10.1901/jeab.1987.48-1.

Manduca, A., Campolongo, P., Palmery, M., Vanderschuren, L. J., Cuomo, V., & Trezza, V. (2014). Social play behavior, ultrasonic vocalizations and their modulation by morphine and amphetamine in Wistar and Sprague-Dawley rats. Psychopharmacology, 231(8), 1661-1673. doi: 10.1007/s00213-013-3337-9.

Martin-Fairey, C. A., & Nunez, A. A. (2014). Circadian modulation of memory and plasticity gene products in a diurnal species. Brain Research, 158130-39. doi:10.1016/j.brainres.2014.07.020.

Martínez, G. S. (2009). Regulación Circadiana del Comportamiento: diferencias entre especies diurnas y nocturnas. Universitas Psychologica, 8(2), 487-496.

McDermott, C. M., LaHoste, G. J., Chen, C., Musto, A., Bazan, N. G., & Magee, J. C. (2003). Sleep Deprivation Causes Behavioral, Synaptic, and Membrane Excitability Alterations in Hippocampal Neurons. The Journal of Neuroscience, 23(29), 9687-9695.

Means, L. W., Arolfo, M. P., Ginn, S. R., Pence, J. D., & Watson, N. P. (2000). Rats More Readily Aquire a Time-of-Day go no-go Discrimination than a Time of Day Choice Discrimination. Behavioural Proccesses, 52(1), 11-20. doi: 10.1016/S0376-6357(00)00109-1.

Mistlberger, R. E., Kent, B. A., Chan, S., Patton, D. F., Weinberg, A., & Parfyonov, M. (2012). Circadian Clocks for All Meal-Times: Anticipation of 2 Daily Meals in Rats. PLoS ONE, 7(2), 1-10. dpi:10.1371/journal.pone.0031772.

Moreira, P. S., Almeida, P. R., Leite-Almeida, H., Sousa, N., & Costa, P. (2016). Impact of Chronic Stress Protocols in Learning and Memory in Rodents: Systematic Review and Meta-Analysis. Plos ONE, 11(9), 1-24. doi:10.1371/journal.pone.0163245.

Mrosovsky, N., Edelstein, K., Hastings, M. H., & Maywood, E. S. (2001). Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): Implications for nonphotic phase shifting. Journal of Biological Rhythms, 16(5), 471-478. doi: 10.1177/074873001129002141.

Novak, C. M., & Nunez, A. A. (1998). Daily rhythms in Fos activity in the rat ventrolateral preoptic area and midline thalamic nuclei. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 275(5 Pt 2), 1620-1626.

Novak, C. M., Smale, L., & Nunez, A. A. (2000). Rhythms in Fos expression in brain areas related to the sleep-wake cycle in the diurnal Arvicanthis niloticus. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 278(5), 1267-1274.

Nunez, A. A., Bult, A., McElhinny, T. L., & Smale, L. (1999). Daily rhythms of Fos expression in hypothalamic targets of the suprachiasmatic nucleus in diurnal and nocturnal rodents. Journal of Biological Rhythms, 14(4), 300-306.

Penagos-Corzo, J. C., & Aguilar Pérez, S. E. (2009). Autodiscriminación condicional del estado de sed en ratas norvegicus. Revista Mexicana de Psicología, 26(2), 185-192.

Penagos-Corzo, J. C., Bonilla, A., Rodríguez-Moreno, A., Flores, G., & Negrete-Díaz, J. V. (2015). Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats. Synapse, 69(11), 543-552. doi:10.1002/syn.21847.

Penagos-Corzo, J. C., Hermosillo, C., & Pérez-Acosta, A. M. (2011). Interacción social y autodiscriminación condicional bajo efectos de metilfenidato en ratas norvegicus. International Journal of Psychology and Psychological Therapy, 11(3), 443-454.

Penagos-Corzo, J. C., Pérez-Acosta, A. M., & Hernández, I. (2015). Social interaction and conditional self-discrimination under a paradigm of avoidance and positive reinforcement in Wistar rats. Psicológica, 36(1), 1-15.

Peng, Z. C., Grassi-Zucconi, G., & Bentivoglio, M. (1995). Fos-related protein expression in the midline paraventricular nucleus of the rat thalamus: Basal oscillation and relationship with limbic efferents. Experimental Brain Research, 104(1), 21-29.

Pérez-Acosta, A. M. & Benjumea Rodríguez, S. (2003). Adquisición y prueba de transferencia de la autodiscriminación condicional en palomas. Acta Colombiana de Psicología, 10, 45-71.

Pérez-Acosta, A. M., Benjumea Rodríguez, S., & Navarro Guzmán, J. I. (2001). Autoconciencia animal: Estudios sobre la autodiscriminación condicional en varias especies. Revista Latinoamericana de Psicología, 33(3), 311-327.

Pérez-Acosta, A. M., Benjumea Rodríguez, S., & Navarro Guzmán, J. I. (2002). Autodiscriminación condicional: la autoconsciencia desde un enfoque conductista. Revista Colombiana de Psicología, 11, 71-80.

Reynolds, G. S. (1966). Discrimination and emission of temporal intervals by pigeons. Joumal of the Experimental Analysis of Behavior, 9(1), 65-68.

Reynolds, G. S., & Catania, A.C. (1962). Temporal generalization in pigeons. Science, 135, 314-315.

Rosenblatt, J. S. (1967). Nonhormonal basis of maternal behavior in the rat. Science, 156(3781), 1512-1514.

Ruby, N. F., & Heller, H. C. (1996). Temperature sensitivity of the suprachiasmatic nucleus of ground squirrels and rats in vitro. Journal of Biological Rhythms, 11(2), 126-136.

Sherin, J. E., Shiromani, P. J., McCarley, R. W., & Saper, C. B. (1996). Activation of ventrolateral preoptic neurons during sleep. Science, 271(5246), 216-219.

Shimp, C. P. (1982). On metaknowledge in the pigeon: An organism’s knowledge about its own behavior. Animal Learning and Behavior, 10(3), 358-364. doi: 10.3758/BF03213722.

Shiromani, P. J., Xu, M., Winston, E. M., Shiromani, S. N., Gerashchenko, D., & Weaver, D. R. (2004). Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. American Journal of Physiology: Regulatory Integrative and Comparative Physiology, 287(1), R47-R57. doi: 10.1152/ajpregu.00138.2004.

Skinner, B. F. (1987). Sobre el Conductismo. Barcelona: Martínez Roca.

Smale, L., Lee, T., & Nunez, A. A. (2003). Mammalian diurnality: Some facts and gaps. Journal of Biological Rhythms, 18(5), 356-366.

Smit, A. N., Patton, D. F., Michalik, M., & Mistlberger, R. E. (2013). Dopaminergic Regulation of Circadian Food Anticipatory Activity Rythms in the Rat. PLoS ONE 8(11), e82381. doi: 10.1371/journal.pone.0082381.

Tachinardi, P., Tøien, Ø., Valentinuzzi, V. S., Buck, C. L., & Oda, G. A. (2015). Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent. Plos ONE, 10(10), 1-12. doi:10.1371/journal.pone.0140500.

Tamai, S., Sanada, K., & Fukada, Y. (2008). Time-of-Day-Dependent Enhancement of Adult Neurogenesis in the Hippocampus. PLoS ONE, 3(12), e3835. doi: 10.1371/journal.pone.0003835.

Terkel, J., & Rosenblatt, J. S. (1972). Humoral factors underlying maternal behavior at parturition: Cross transfusion between freely moving rats. Journal of Comparative and Physiological Psychology, 80, 365-371.

Tomotani, B. M., Flores, D. L., Tachinardi, P., Paliza, J. D., Oda, G. A., & Valentinuzzi, V. S. (2012). Field and Laboratory Studies Provide Insights into the Meaning of Day-Time Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco. Plos ONE,

7(5), 1-8. doi:10.1371/journal.pone.0037918.

Trull, F. L., & Rich, B. A. (1999). More regulation of rodents. Science, 284(5419), 1463.

Valentinuzzi, V. S., Menna-Barreto, L., & Xavier, G. F. (2004). Effect of circadian phase on performance of rats in the Morris water maze task. Journal of Biological Rhythms, 19(4), 312–324. doi: 10.1177/0748730404265688.

Walker, F. R., Naicker, S., Hinwood, M., Dunn, N., & Day, T. A. (2009). Strain differences in coping behaviour, novelty seeking behaviour, and susceptibility to socially conditioned fear: a comparison between Wistar and Sprague Dawley rats. Stress, 12(6), 507-516. doi: 10.3109/10253890802673134.

Wideman, C. H., & Murphy, H. M. (2009). Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutritional Neuroscience, 12(5), 233-240. doi: 10.1179/147683009X423436.

Wiesner, B. P., & Sheard, N. M. (1933). Maternal behaviour in the rat. London: Oliver & Boyd.