History and epistemology of early cybernetics: the case of the homeostat

Main Article Content

Alfonso Nicolás Venturelli

Abstract

W. R. Ashby is known as a central figure of the mid-twentieth century cybernetics movement. Here his historical significance concerning the following development of the cognitive and behavioral sciences is assessed. Specifically, the paper focuses on the epistemological and methodological assumptions and implications behind the homeostat, a famous cybernetic device presented by Ashby during the 1952 Macy conference in order to study adaptive behavior. On the one hand, the contact points between the behavioral tradition in psychology and the theoretical and programmatic statement underlying the homeostat are considered: Over and above Ashby’s strong behaviorist roots, it will be shown how the homeostat also clearly departs from behaviorism. On the other hand, the guidelines of a solid philosophy of scientific modeling stemming from Ashby’s early contribution are highlighted.

Article Details

How to Cite
History and epistemology of early cybernetics: the case of the homeostat. (2016). Argentinean Journal of Behavioral Sciences, 8(2), 124-133. https://doi.org/10.32348/1852.4206.v8.n2.10454
Section
Original Articles
Author Biography

Alfonso Nicolás Venturelli, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Humanidades

Universidad Nacional de Córdoba

How to Cite

History and epistemology of early cybernetics: the case of the homeostat. (2016). Argentinean Journal of Behavioral Sciences, 8(2), 124-133. https://doi.org/10.32348/1852.4206.v8.n2.10454

References

Asaro, P. (2006). Working models and the synthetic method: Electronic brains as mediators between neurons and behavior. Science Studies, 19(1), 12-34.

Asaro, P. (2008). From mechanisms of adaptation to intelligence amplifiers: The philosophy of W. Ross Ashby. In M. Wheeler, P. Husbands, & O. Holland (Eds.), The Mechanical Mind in History (pp. 149-184). Cambridge: MIT Press.

Ashby, W. R. (1947). Principles of the self-organizing dynamic system. Journal of General Psychology, 37(2), 125-128.

Ashby, W. R. (1952). Design for a Brain. The Origin of Adaptive Behaviour. Nueva York: Wiley.

Ashby, W. R. (1956). An Introduction to Cybernetics. London: Chapman & Hall.

Ashby, W. R. (1965). Proyecto para un Cerebro. El Origen del Comportamiento Adaptativo. Madrid: Tecnos.

Ashby, W. R. (1999). An Introduction to Cybernetics. London: Chapman & Hall.

Bailer-Jones, D. (2009). Scientific Models in Philosophy of Science. Pittsburgh: University of Pittsburgh Press.

Beer, R. (2000). Dynamical approaches in cognitive science. Trends in Cognitive Sciences, 4(3), 91-99.

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence Journal, 47(1-3), 139-159.

Cariani, P. (2009). The homeostat as embodiment of adaptive control. International Journal of General Systems, 3(2), 139-154.

Clark, A. (2001). Mindware. An Introduction to the Philosophy of Cognitive Science. Oxford: Oxford University Press.

Cordeschi, R. (2002). The Discovery of the Artificial: Behavior, Mind and Machines Before and Beyond Cybernetics. Dordrecht: Kluwer.

Cordeschi, R. (2008). Steps toward the synthetic method: Symbolic information processing and self-organizing systems in early Artificial Intelligence. In P. Husbands, O. Holland, & M. Wheeler (Eds.), The Mechanical Mind in History (pp. 219-258). Cambridge

(Ma.): MIT Press.

Di Paolo, E., & Harvey, I. (2003). Decisions and noise: The scope of evolutionary synthesis and dynamical analysis. Adaptive Behavior, 11(4), 284-288.

Di Paolo, E., Noble, J., & Bullock, S. (2000). Simulation models as opaque thought experiments. In M. Bedau, J. McCaskill, N. Packard, & S. Rasmussen (Eds.), Artificial Life VII: The Seventh International Conference on Artificial Life (pp. 497-506). Cambridge (Ma.): MIT Press.

Dupuy, J.P. (2000). The Mechanization of the Mind: On the Origins of Cognitive Science. Princeton (NJ): Princeton University Press.

Gardner, H. (1985). La Nueva Ciencia de la Mente: Historia de la Revolución Cognitiva. Barcelona: Paidós.

Gelepithis, P. (2004). Remarks on the foundations of cybernetics and cognitive science. Kybernetes, 33(9-10), 1396-1410.

Gomila, A., & Calvo Garzón, F. (2008). Directions for an embodied cognitive science: Towards an integrated approach. In F. Calvo Garzón, & A. Gomila (Eds.), Handbook of Cognitive Science: An Embodied Approach (pp. 1-25). Oxford: Elsevier.

Heims, S. (1991). Constructing a Social Science for Postwar America: The Cybernetics Group. Cambridge (Ma.): MIT Press.

Heylighen, F., & Joslyn, C. (2001). Cybernetics and second-order cybernetics. In R. A. Meyers (Ed.), Encyclopedia of Physical Science & Technology (pp. 155-170). Nueva York: Academic Press.

Johnston, J. (2008). The Allure of Machinic Life. Cybernetics, Artificial Life, and the New AI. Cambridge (Ma.): MIT Press.

McCorduck, P. (1979). Machines Who Think. A Personal Inquiry into the History and Prospects of Artificial Intelligence. Nueva York: Freeman and Co.

Pickering, A. (2010). The Cybernetic Brain. Sketches of Another Future. Chicago: The University of Chicago Press.

Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose, and teleology. Philosophy of Science, 10(1), 18-24.

Scott, B. (2004). Second order cybernetics: An historical introduction. Kybernetes, 33(9-10), 1365-1378.

Van Gelder, T., & Port, R. (1995). It’s about time. In R. Port, & T. van Gelder (Eds.), Mind as Motion: Explorations in the Dynamics of Cognition (pp. 1-43). Cambridge (Ma.): MIT Press.

Von Foerster, H. (2003). Understanding Understanding. Essays on Cybernetics and Cognition. Nueva York: Springer-Verlag.