Validación la Escala Corta de Fluidez (FSS) en videojugadores argentinos
Contenido principal del artículo
Resumen
El objetivo del trabajo fue evaluar, en videojugadores argentinos, las propiedades psicométricas de la
Escala Corta de Fluidez o Flow Short Scale (FSS). La muestra estuvo compuesta por 749 videojugadores
(Hombres = 49.5%; Mujeres= 50.5%), de entre 18 y 59 años (M = 23.76; DE = 5.656). La FSS permite analizar el Estado de Fluidez como una experiencia unifactorial o bifactorial y, también incluye, una escala de Importancia Percibida y tres ítems que evalúan capacidad, demanda y balance entre capacidad y demanda (Rheinberg et al., 2003; Engeser & Rheinberg, 2008). Para establecer evidencias de validez de la escala, en videojugadores argentinos, se utilizó el Análisis Factorial Confirmatorio, el Omega de McDonald (ω) y el CAIC, para evaluar la parsimonia de la FSS. Al analizar y evaluar los resultados, la FSS unidimensional y bidimensional se ajustaron al contexto local. Sin embargo, podrían mejorarse sus propiedades psicométricas.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La RACC aplicará la licencia internacional de atribuciones comunes creativas (Reconocimiento 4.0 Internacional: https://creativecommons.org/licenses/by/4.0/).
Bajo esta licencia, se permite cualquier explotación de la obra, incluyendo la explotación con fines comerciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción. Esta licencia es una licencia libre según la Freedom Defined. La única condición es que siempre y en todos los casos se cite a los autores y a la fuente original de publicación (i.e., RACC). Esta licencia fue desarrollada para facilitar el acceso abierto, gratuito y libre a trabajos originales científicos y artísticos.
Cómo citar
Referencias
Abbasi, A. Z., Ting, D. H., & Hlavacs, H. (2017). Engagement in games: Developing an instrument to measure consumer videogame engagement and its validation. International Journal of Computer Games Technology, 2017, 7363925. https://doi.org/10.1155/2017/7363925
Brown, T. (2015). Confirmatory factor analysis for applied research, Second Edition. Guilford Press.
Bryce Soutter, A. R., & Hitchens, M. (2016). The relationship between character identification and flow state within video games. Computers in Human Behavior, 55(PB), 1030-1038. https://doi.org/10.1016/j.chb.2015.11.012https://doi.org/10.1016/j.chb.2015.11.012
Chiang, Y., Lin, S. J. S., Cheng, C., & Liu, E. Z. (2011). Exploring online game players’ flow experiences and positive affect. The Turkish Online Journal of Educational Technology, 10(1), 106-114. http://www.tojet.net/articles/v10i1/10111.pdf
Cho, G., Hwang, H., Sarstedt, M., & Ringle, C., M. (2020). Cutoff criteria for overall model ft indexes in generalized structured component analysis. Journal of Marketing Analytics, 8, 189-202. https://doi.org/10.1057/s41270-020-00089-1https://doi.org/10.1057/s41270-020-00089-1
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. Jossey-Bass.
Csikszentmihalyi, M., & Nakamura, J. (2018). Flow, altered states of consciousness, and human evolution. Journal of Consciousness Studies, 25(11-12), 102–114. https://philpapers.org/rec/CSIFAS
Engeser, S. (2012). Appendix: Flow Short Scale. En S. Engeser (Ed.), Advance in Flow Research (pp. 187-199). Springer. https://doi.org/10.1007/978-1-4614-2359-1
Engeser, S., & Rheinberg, F. (2008). Flow, performance and moderators of challenge-skill balance. Motivation and Emotion, 32(3), 158-172. https://doi.org/10.1007/s11031-008-9102-4
Erhel, S., & Jamet, E. (2019). Improving instructions in educational computer games: Exploring the relations between goal specificity, flow experience and learning outcomes. Computers in Human Behavior, 91, 106-114. https://doi.org/10.1016/j.chb.2018.09.020
Escobedo Portillo, M. T., Hernández Gómez, J. A., Estebané Ortega, V. E., & Martínez Moreno, G. (2016). Modelos de ecuaciones estructurales: características, fases, construcción, aplicación y resultados. Ciencia y Trabajo, 18(55), 16-22. https://doi.org/10.4067/S0718-24492016000100004
Fang, X., Zhang, J., & Chan, S. S. (2013). Development of an Instrument for Studying Flow in Computer Game Play. International Journal of Human–Computer Interaction, 29(7), 456-470. https://doi.org/10.1080/10447318.2012.715991
Galarza, A. L., Fernández-Liporace, M., Castañeiras, C., & Freiberg-Hoffmann, A. (2019). Análisis Psicométrico del Inventario de Orientaciones Suicidas ISO-30 en Adolescentes Escolarizados (14-18 años) y Jóvenes Universitarios Marplatenses. Revista Iberoamericana de Diagnóstico y Evaluación, 51(2), 135-147. https://doi.org/10.21865/RIDEP51.2.10
Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60. https://doi.org/10.21427/D7CF7R
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Hull, D. C., Williams, G. A., & Griffiths, M. D. (2013). Video game characteristics, happiness and flow as predictors of addiction among video game players: A pilot study. Journal of Behavioral Addictions, 2(3), 145–152. https://doi.org/10.1556/JBA.2.2013.005
Iannelli, L., Giglietto, F., Rossi, L., & Zurovac, E. (2018). Facebook digital traces for survey research: assessing the efficiency and effectiveness of a facebook ad–based procedure for recruiting online survey respondents in niche and difficult-to-reach populations. Social Science Computer Review, 38(4), 462-476. https://doi.org/10.1177/0894439318816638
İşigüzel, B., & Çam, S. (2014). The adaptation of Flow Short Scale to Turkish: A validity and reliability study. International Journal of Human Sciences, 11(2), 788-801. https://doi.org/10.14687/ijhs.v11i2.2826
Jackson, S. A., Martin, A. J., & Eklund, R. C. (2008). Long and Short Measures of Flow: The Construct Validity of the FSS-2, DFS-2, and New Brief Counterparts. Journal of Sport and Exercise Psychology, 30(5), 561-587. https://doi.org/10.1123/jsep.30.5.561
Kiili, K. (2006). Evaluations of an experiential gaming model. Human. Technology. An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 187-201. https://ht.csr-pub.eu/index.php/ht/issue/view/5/5
Kline, R. B. (2011). Principles and practice of structural equiation modeling (3rd ed.). The Guilford Press.
Kosa, M., Uysal, A., & Eren, P. E. (2020). Acceptance of virtual reality games: A multi-theory approach. International Journal of Gaming and Computer-Mediated Simulations, 12(1), 43-70. https://doi.org/10.4018/IJGCMS.2020010103
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V. & Stillwell, D. (2015). Facebook as a Research Tool for the Social Sciences: Opportunities, Challenges, Ethical Considerations, and Practical Guidelines. American Psychological Association, 70(6), 543-556. https://doi.org/10.1037/a0039210
Kyriazos, T. A., Stalikas, A., Prassa, K., Galanakis, M., Flora, K., & Chatzilia, V. (2018). The Flow Short Scale (FSS) Dimensionality and What MIMIC Shows on Heterogeneity and Invariance. Psychology, 9(6), 1357-1382. https://doi.org/10.4236/psych.2018.96083
Li, Ch-H. (2016). The Performance of ML, DWLS, and ULS Estimation With Robust Corrections in Structural Equation Models With Ordinal Variables. Psychological Methods, 21(3), 369-387. https://doi.org/10.1037/met0000093
Özdemir, A. S., Ayyildiz Durhan, T., & Akgül, B. M. (2020). Validity and Reliability Study of Adapting Flow Life Scale to Recreational Activities. Gazi Journal of Physical Education and Sport Sciences, 25(2), 107-116. https://dergipark.org.tr/en/download/article-file/1031836
Perttula, A., Kiili, K., Lindstedt, A., & Tuomi, P. (2017). Flow experience in game based learning – a systematic literature review. International Journal of Serious Games, 4(1), 57-72. https://doi.org/10.17083/ijsg.v4i1.151
Phakiti, A. (2018) Confirmatory Factor Analysis and Structural Equation Modeling. En: A. Phakiti P. De Costa, L. Plonsky, S. Starfield (Eds), The Palgrave Handbook of Applied Linguistics Research Methodology (pp. 459-500). Palgrave Macmillan. https://doi.org/10.1057/978-1-137-59900-1_21
Plummer, J. P., Schuster, D., & Keebler, J. R. (2017). The effects of gender, flow and video game experience on combat identification training. Ergonomics, 60(8), 1101-1111. https://doi.org/10.1080/00140139.2017.1280187
Raykov, T., & Marcoulides, G. A. (2011). Introduction to Psychometric Theory. Taylor & Francis.
Rheinberg, F. (2015). The Flow-Short-Scale (FSS) translated into various languages. https://www.researchgate.net/publication/283348840_Die_Flow-Kurzskala_FKS_ubersetzt_in_verschiedene_Sprachen_The_Flow-Short-Scale_FSS_translated_into_various_languages?channel=doi&linkId=5635fe0808aeb786b703b6e8&showFulltext=true
Rheinberg, F., & Engeser, S. (2018). Intrinsic Motivation and Flow. En J. Heckhausen & H. Heckhausen (Eds.), Motivation and Action (3rd. ed., pp. 579-622). Springer. https://doi.org/10.1007/978-3-319-65094-4_14
Rheinberg, F., Vollmeyer, R., & Engeser, S. (2003). Die Erfassung des Flow-Erlebens [The Assessment of Flow Experience]. En J. Stiensmeier-Pelster & F. Rheinberg (Eds.), Diagnostik von Selbstkonzept, Lernmotivation und Selbstregulation [Diagnosis of Motivation and Selfconcept] (pp. 261-279). Hogrefe.
Rife, S. C., Cate, K. L., Kosinski, M., & Stillwell, D. (2016). Participant recruitment and data collection through Facebook: the role of personality factors. International Journal of Social Research Methodology, 19(1), 69-83. https://doi.org/10.1080/13645579.2014.957069
Rojas-Torres, L. (2020). Robustez de los Índices de ajuste del análisis factorial confirmatorio a los valores extremos. Revista de Matemática: Teoría y Aplicaciones, 27(2), 383-404. https://doi.org/10.15517/rmta.v27i2.33677
Schmidt, S. C. E., Gnam, J., Kopf, M., Rathgeber, T., & Woll, A. (2020). The Influence of Cortisol, Flow, and Anxiety on Performance in E-Sports: A Field Study. BioMed Research International, 2020, 9651245. https://doi.org/10.1155/2020/9651245
Schüler, J. (2007). Arousal of Flow Experience in a Learning Setting and its Effects on Exam Performance and Affect. Zeitschrift für Pädagogische Psychologie, 21(3/4), 217-227. https://doi.org/10.1024/1010-0652.21.3.217
Shahian, L., Pishghadam, R., & Khajavy, G. H. (2017). Flow and reading comprehension: Testing the mediating role of emotioncy. Issues in Educational Research, 27(3), 527-549. https://www.iier.org.au/iier27/shahian.pdf
Shaver, L. G., Khawer, A., Yi, Y., Aubrey-Bassler, K., Etchegary, H., Roebothan, B., Asghari, S., & Wang, P., P. (2019). Using Facebook advertising to recruit representative samples: Feasibility assessment of a cross-sectional survey. Journal of Medical Internet Research, 21(8), e14021. https://doi.org/10.2196/14021
Shi, D., & Maydeu-Olivares, A. (2020). The effect of estimation methods on SEM Fit Indices. Educational and Psychological Measurement, 80(3), 421-445. https://doi.org/10.1177/0013164419885164
Tian, Y., Bian, Y., Han, P., Wang, P., Gao, F., & Chen, Y. (2017). Physiological signal analysis for evaluating flow during playing of computer games of varying difficulty. Frontiers in Psychology, 8, 1121. https://doi.org/10.3389/fpsyg.2017.01121
Ventura-León, J. L., & Caycho-Rodríguez, T. (2017). El coeficiente Omega: un método alternativo para la estimación de la confiabilidad. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud, 15(1), 625-627. https://www.redalyc.org/articulo.oa?id=77349627039
Viladrich, C., Angulo-Brunet, A. & Doval, E. (2017). A journey around alpha and Omega to estimate internal consistency reliability. Anales de Psicología, 33(3), 755-782. https://doi.org/10.6018/analesps.33.3.268401
Watkins, M. W. (2017). The reliability of multidimensional neuropsychological measures: from alpha to Omega. The Clinical Neuropsychologist, 31(6-7), 1113-1126. https://doi.org/10.1080/13854046.2017.1317364
Welch, T.D. (2020). Is Facebook a viable recruitment tool? Nurse Researcher, 28(2), 9-13. https://doi.org/10.7748/nr.2019.e1682
Zhang, Z., & Yuan, K. (2016). Robust Coefficients Alpha and Omega and Confidence Intervals with Outlying Observations and Missing Data: Methods and Software. Educational and Psychological Measurement, 76(3), 387-411. https://doi.org/10.1177/0013164415594658