La administración sistémica e intra-accumbens del agonista 5-HT1B CP94253 modula la auto-administración oral de etanol en ratas

Contenido principal del artículo

Juan C. Jiménez
Felipe Cortés-Salazar
Benita Cedillo-Ildefonso
Florencio Miranda

Resumen

moduladas por receptores 5-HT1B en el núcleo accumbens (nAcc). Esta investigación se diseñó para evaluar los efectos de la administración sistémica e intra-accumbens del agonista 5-HT1B CP94253 en la auto-administración oral de EtOH. Se utilizaron ratas machos Wistar que se privaron de agua por 24 h, y se entrenaron a presionar una palanca para obtener EtOH como reforzador hasta que la tasa de respuestas permaneció estable al 80%. Después, a un grupo de ratas se les administró una inyección intraperitoneal del agonista 5-HT1B CP94253 antes de someterse al programa RF3 (razón fija 3) con EtOH como reforzador. Otro grupo de ratas, después de un entrenamiento similar, se les administró una inyección intra-accumbens de CP94253. Los datos indicaron que tanto la inyección sistémica como la intra-accumbens de CP94253 redujeron la auto-administración oral de EtOH. Esto sugiere que los receptores 5-HT1B podrían participar en la modulación de la auto-administración oral de EtOH.

Detalles del artículo

Cómo citar
Jiménez, J. C., Cortés-Salazar, F. ., Cedillo-Ildefonso, B., & Miranda, F. (2022). La administración sistémica e intra-accumbens del agonista 5-HT1B CP94253 modula la auto-administración oral de etanol en ratas. Revista Argentina De Ciencias Del Comportamiento, 14(1), 68–81. https://doi.org/10.32348/1852.4206.v14.n1.30138
Sección
Artículos Originales

Citas

Bruinvels, A. T., Landwehrmeyer, B., Gustafson, E. L., Durkin, M. M., Mengod, G., Branchek, T. A., … Palacios, J. M. (1994). Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology, 33(3-4), 367-386. doi: 10.1016/0028-3908(94)90067-1.

Bubar, M. J., & Cunningham, K. A. (2007). Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience, 146(1), 286-297. doi: 10.1016/j.neuroscience.2006.12.071.

Cachope, R., Mateo, Y., Mathur, B. N., Irving, J., Wang, H. L., Morales, M., … Cheer, J. F. (2012). Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Reports, 2(1), 33–41. doi: 10.1016/j.celrep.2012.05.011.

Cao, J., LaRocque, E., & Li, D. (2013). Associations of the 5-hydroxytryptamine (serotonin) receptor 1B gene (HTR1B) with alcohol, cocaine, and heroin abuse. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: the Official Publication of the International Society of Psychiatric Genetics, 162B(2), 169–176. doi: 10.1002/ajmg.b.32128.

Clarke, R. B., Adermark, L., Chau, P., Söderpalm, B., & Ericson, M. (2014). Increase in nucleus accumbens dopamine levels following local ethanol administration is not mediated by acetaldehyde. Alcohol and Alcoholism (Oxford, Oxfordshire), 49(5), 498–504. doi: 10.1093/alcalc/agu047.

Creed, M. C., Ntamati, N. R., & Tan, K. R. (2014). VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Frontiers in Behavioral Neuroscience, 8, 8. doi: 10.3389/fnbeh.2014.00008.

Crespo, J. A., Sturm, K., Saria, A., & Zernig, G. (2006). Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 26(22), 6004–6010. doi: 10.1523/JNEUROSCI.4494-05.2006.

Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America, 85(14), 5274–5278. doi: 10.1073/pnas.85.14.5274.

Enoch, M. A. (2008). The role of GABA(A) receptors in the development of alcoholism. Pharmacology, Biochemistry, and Behavior, 90(1), 95–104. doi: 10.1016/j.pbb.2008.03.007.

Fletcher, P. J., Azampanah, A., & Korth, K. M. (2002). Activation of 5-HT(1B) receptors in the nucleus accumbens reduces self-administration of amphetamine on a progressive ratio schedule. Pharmacology, Biochemistry, and Behavior, 71(4), 717–725. doi: 10.1016/s0091-3057(01)00717-1.

Garcia, R., Cotter, A. R., Leslie, K., Olive, M. F., & Neisewander, J. L. (2017). Preclinical evidence that 5-HT1B receptor agonists show promise as medications for psychostimulant use disorders. The International Journal of Neuropsychopharmacology, 20(8), 644–653. doi: 10.1093/ijnp/pyx025.

Hanada, Y., Kawahara, Y., Ohnishi, Y. N., Shuto, T., Kuroiwa, M., Sotogaku, N., … Nishi, A. (2018). p11 in cholinergic interneurons of the nucleus accumbens is essential for dopamine responses to rewarding stimuli. eNeuro, 5(5), ENEURO 0332-18 doi: 10.1523/ENEURO.0332-18.2018.

Hannon, J., & Hoyer, D. (2008). Molecular biology of 5-HT receptors. Behavioural Brain Research, 195(1), 198–213. doi: 10.1016/j.bbr.2008.03.020.

Hansen, S. T., & Mark, G. P. (2007). The nicotinic acetylcholine receptor antagonist mecamylamine prevents escalation of cocaine self-administration in rats with extended daily access. Psychopharmacology, 194(1), 53–61. doi: 10.1007/s00213-007-0822-z.

Hoyer, D., Hannon, J. P., & Martin, G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology, Biochemistry, and Behavior, 71(4), 533–554. doi: 10.1016/s0091-3057(01)00746-8.

IBM Corp. (2019). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

Imperato, A., & Di Chiara, G. (1986). Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. The Journal of Pharmacology and Experimental Therapeutics, 239(1), 219–228.

Koós, T., & Tepper, J. M. (2002). Dual cholinergic control of fast-spiking interneurons in the neostriatum. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 22(2), 529–535. doi: 10.1523/JNEUROSCI.22-02-00529.2002.

Kumar, S., Porcu, P., Werner, D. F., Matthews, D. B., Diaz-Granados, J. L., Helfand, R. S., & Morrow, A. L. (2009). The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology, 205(4), 529–564. doi: 10.1007/s00213-009-1562-z.

Maurel, S., De Vry, J., & Schreiber, R. (1999). 5-HT receptor ligands differentially affect operant oral self-administration of ethanol in the rat. European Journal of Pharmacology, 370(3), 217–223. doi: 10.1016/s0014-2999(99)00125-9.

Miczek, K. A., & de Almeida, R. M. (2001). Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology, 157(4), 421–429. doi: 10.1007/s002130100831.

Miranda, F., Sandoval-Sánchez, A., Cedillo, L. N., Jiménez, J. C., Millán-Mejía, P., & Velázquez-Martínez, D. N. (2007). Modulatory role of 5-HT1B receptors in the discriminative signal of amphetamine in the conditioned taste aversion paradigm. Pharmacological Reports, 59(5), 517–524.

Morikawa, H., Manzoni, O. J., Crabbe, J. C., & Williams, J. T. (2000). Regulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors. Molecular Pharmacology, 58(6), 1271–1278. doi: 10.1124/mol.58.6.1271.

Müller, C. P., Carey, R. J., Huston, J. P., & De Souza Silva, M. A. (2007). Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Progress in Neurobiology, 81(3), 133–178. doi: 10.1016/j.pneurobio.2007.01.001.

Müller, C. P., & Homberg, J. R. (2015). The role of serotonin in drug use and addiction. Behavioural Brain Research, 277, 146–192. doi: 10.1016/j.bbr.2014.04.007.

Müller, C. P., & Huston, J. P. (2006). Determining the region-specific contributions of 5-HT receptors to the psychostimulant effects of cocaine. Trends in Pharmacological Sciences, 27(2), 105–112. doi: 10.1016/j.tips.2005.12.003.

Muramatsu, M., Lapiz, M. D., Tanaka, E., & Grenhoff, J. (1998). Serotonin inhibits synaptic glutamate currents in rat nucleus accumbens neurons via presynaptic 5-HT1B receptors. The European Journal of Neuroscience, 10(7), 2371–2379. doi: 10.1046/j.1460-9568.1998.00248.x.

O'Dell, L. E., & Parsons, L. H. (2004). Serotonin1B receptors in the ventral tegmental area modulate cocaine-induced increases in nucleus accumbens dopamine levels. The Journal of Pharmacology and Experimental Therapeutics, 311(2), 711–719. doi: 10.1124/jpet.104.069278.

Parsons, L. H., Koob, G. F., & Weiss, F. (1999). RU 24969, a 5-HT1B/1A receptor agonist, potentiates cocaine-induced increases in nucleus accumbens dopamine. Synapse (New York, N.Y.), 32(2), 132–135. doi: 10.1002/(SICI)1098-2396(199905)32:2<132::AID-SYN6>3.0.CO;2-V.

Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. San Diego: American Press Inc.

Pentkowski, N. S., Harder, B. G., Brunwasser, S. J., Bastle, R. M., Peartree, N. A., Yanamandra, K., … Neisewander, J. L. (2014). Pharmacological evidence for an abstinence-induced switch in 5-HT1B receptor modulation of cocaine self-administration and cocaine-seeking behavior. ACS Chemical Neuroscience, 5(3), 168–176. doi: 10.1021/cn400155t.

Ruf, B. M., & Bhagwagar, Z. (2009). The 5-HT1B receptor: a novel target for the pathophysiology of depression. Current Drug Targets, 10(11), 1118–1138. doi: 10.2174/138945009789735192.

Sarhan, H., & Fillion, G. (1999). Differential sensitivity of 5-HT1B auto and heteroreceptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 360(4), 382–390. doi: 10.1007/s002109900067.

Sari, Y. (2004). Serotonin1B receptors: from protein to physiological function and behavior. Neuroscience and Biobehavioral Reviews, 28(6), 565–582. doi: 10.1016/j.neubiorev.2004.08.008.

Sari, Y. (2013). Role of 5-hydroxytryptamine 1B (5-HT1B) receptors in the regulation of ethanol intake in rodents. Journal of Psychopharmacology (Oxford, England), 27(1), 3–12. doi: 10.1177/0269881112463126.

Sari, Y., Johnson, V. R., & Weedman, J. M. (2011). Role of the serotonergic system in alcohol dependence: from animal models to clinics. Progress in Molecular Biology and Translational Science, 98, 401–443. doi: 10.1016/B978-0-12-385506-0.00010-7.

Schoeffter, P., & Hoyer, D. (1989). 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some beta-adrenoceptor antagonists. Naunyn-Schmiedeberg's Archives of Pharmacology, 340(3), 285–292. doi: 10.1007/BF00168512.

Shin, J. H., Adrover, M. F., & Alvarez, V. A. (2017). Distinctive modulation of dopamine release in the nucleus accumbens shell mediated by dopamine and acetylcholine receptors. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 37(46), 11166–11180. doi: 10.1523/JNEUROSCI.0596-17.2017.

Stobbs, S. H., Ohran, A. J., Lassen, M. B., Allison, D. W., Brown, J. E., & Steffensen, S. C. (2004). Ethanol suppression of ventral tegmental area GABA neuron electrical transmission involves N-methyl-D-aspartate receptors. The Journal of Pharmacology and Experimental Therapeutics, 311(1), 282–289. doi: 10.1124/jpet.104.071860.

Tomkins, D. M., & O'Neill, M. F. (2000). Effect of 5-HT(1B) receptor ligands on self-administration of ethanol in an operant procedure in rats. Pharmacology, Biochemistry, and Behavior, 66(1), 129–136. doi: 10.1016/s0091-3057(00)00232-x.

Virk, M. S., Sagi, Y., Medrihan, L., Leung, J., Kaplitt, M. G., & Greengard, P. (2016). Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 734–739. doi: 10.1073/pnas.1524183113.

Weiss, F., Lorang, M. T., Bloom, F. E., & Koob, G. F. (1993). Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. The Journal of Pharmacology and Experimental Therapeutics, 267(1), 250–258.

Yan, Q. S., & Yan, S. E. (2001). Serotonin-1B receptor-mediated inhibition of [(3)H]GABA release from rat ventral tegmental area slices. Journal of Neurochemistry, 79(4), 914–922. doi: 10.1046/j.1471-4159.2001.00643.x.

Yan, Q. S., Zheng, S. Z., Feng, M. J., & Yan, S. E. (2005). Involvement of 5-HT1B receptors within the ventral tegmental area in ethanol-induced increases in mesolimbic dopaminergic transmission. Brain Research, 1060(1-2), 126–137. doi: 10.1016/j.brainres.2005.08.051.

Yorgason, J. T., Zeppenfeld, D. M., & Williams, J. T. (2017). Cholinergic interneurons underlie spontaneous dopamine release in nucleus accumbens. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 37(8), 2086–2096. doi: 10.1523/JNEUROSCI.3064-16.2017.

Zhou, F. M., Wilson, C. J., & Dani, J. A. (2002). Cholinergic interneuron characteristics and nicotinic properties in the striatum. Journal of Neurobiology, 53(4), 590–605. doi: 10.1002/neu.10150.