Evaluación de las malas especificaciones en modelos de ecuaciones estructurales

Contenido principal del artículo

Sergio Dominguez-Lara
César Merino-Soto

Resumen

Las malas especificaciones hacen referencia a dos situaciones: sobre-parametrización e infra-parametrización. En este sentido, los índices de modificación informan sobre aquellas especificaciones adicionales que deben realizarse para mejorar el ajuste. Sin embargo, estas re-especificaciones pueden ser no relevantes. Saris, Satorra, y Van der Veld (SSV) propusieron un método que proporciona información para decidir sobre la importancia práctica de las malas especificaciones identificadas por los índices de modificación, y que complementa a los índices de ajuste habituales. Si bien existen programas disponibles para evaluar las malas especificaciones, se requieren outputs específicos. Para aplicar el método SSV, se presenta una sintaxis escrita para SPSS, lo que permite ampliar el ambiente informático de su aplicación.

Detalles del artículo

Cómo citar
Evaluación de las malas especificaciones en modelos de ecuaciones estructurales. (2018). Revista Argentina De Ciencias Del Comportamiento, 10(2), 19-24. https://doi.org/10.32348/1852.4206.v10.n2.19595
Sección
Artículos Originales

Cómo citar

Evaluación de las malas especificaciones en modelos de ecuaciones estructurales. (2018). Revista Argentina De Ciencias Del Comportamiento, 10(2), 19-24. https://doi.org/10.32348/1852.4206.v10.n2.19595

Referencias

Bentler, P. M., & Wu, E. J. C. (2012). EQS 6.2 for windows [Programa estadístico]. Encino, CA: Multivariate Software, Inc.

Cieciuch, J., Davidov, E., Oberski, D. L., & Algesheimer, R. (2015). Testing for measurement invariance by detecting local misspecification and an illustration across online and paper-and-pencil samples. European Political Science, 14(4), 521-538. doi:

10.1057/eps.2015.64

Dominguez-Lara, S. (2016a). Errores correlacionados y estimación de la fiabilidad en estudios de validación: comentarios al trabajo validación de la escala ehealth literacy (eheals) en población universitaria española. Revista Española de Salud Pública, 90(9), e1-e2.

Dominguez-Lara, S. (2016b). Evaluación de modelos estructurales, más allá de los índices de ajuste. Enfermería Intensiva, 27(2), 84-85. doi: 10.1016/j.enfi.2016.03.003

Dominguez-Lara, S. (2016c). Análisis estructural del Inventario de Depresión Estado – Rasgo en pacientes con diagnóstico de depresión de Lima. Revista del Hospital Psiquiátrico de la Habana, 13(1).

Dominguez-Lara, S., & Merino-Soto, C. (2018). Efectos de método en el Inventario de Depresión Estado-Rasgo (IDER): un análisis SEM. Avances en Psicología Latinoamericana, 36(2), 253-267. doi: 10.12804/revistas.urosario.edu.co/apl/a.4151

Ferrando, P., & Lorenzo-Seva, U. (2014). El análisis factorial exploratorio de los ítems: algunas consideraciones adicionales. Anales de Psicología, 30(3), 1170-1175. doi: 10.6018/analesps.30.3.199991

Graham, J., Guthrie, A., & Thompson, B. (2003). Consequences of not interpreting structure coefficients in published CFA research: A reminder. Structural Equation Modeling, 10(1), 142-153. doi: 10.1207/S15328007SEM1001_7

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model specification. Psychological Methods, 3(4), 424-453. doi: 10.1037/1082-989X.3.4.424

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. doi: 10.1037//1082-989X.1.2.130

Merino-Soto, C. (2015). Re-análisis de la confiabilidad del Cuestionario de autoeficacia profesional (AU-10), en Maffei et al. (2012). Pensamiento Psicológico, 13(1), 137-138.

Murray, A. L., & Johnson, W. (2013). The limitations of model fit in comparing the bi-factor versus high-order models of human cognitive ability structure. Intelligence, 41(5), 407-422. doi: 10.1016/j.intell.2013.06.004

Oberski, D. (2009). Jrule for Mplus version 0.91 [computer software]. doi: 10.5281/zenodo.10657

Perry, J. L., Nicholls, A. R., Clough, P. J., & Crust, L. (2015). Assessing model fit: Caveats and recommendations for confirmatory

factor analysis and exploratory structural equation modeling. Measurement in Physical Education and Exercise Science, 19(1), 12-21.

doi: 10.1080/1091367X.2014.952370

Pornprasertmanit, S. (2015). Modification indices and their power approach for model fit evaluation. Recuperado de: https://www.rdocumentation.org/packages/semTools/versions/0.5-0/topics/miPowerFit

Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation modeling or detection of misspecifications? Structural Equation Modeling, 16(4), 561-582. doi: 10.1080/10705510903203433

Schmitt, T. (2011). Current methodological considerations in exploratory and confirmatory factor analysis. Journal of Psychoeducational Assessment, 29(4), 304-321. doi: 10.1177/0734282911406653

Sörbom, D. (1989). Model modification. Psychometrika, 54(3), 371-384. doi: 10.1007/BF02294623

Sotelo, L., Sotelo, N., Dominguez, S., Cueto, E., Alarcón, D., Poma, I., Padilla, O., & Barboza, M. (2012). Propiedades Psicométricas

del Inventario de Depresión Estado-Rasgo (IDER) en una muestra de Adultos de Lima Metropolitana. Avances en Psicología, 20(2), 59-68.

van der Veld, W., & Saris, W. E. (2011). Causes of generalized social trust: An innovative cross-national evaluation. En E. Davidov, P.

Schmidt, & J. Billiet (Eds.), Cross-cultural analysis: Methods and applications (pp. 207-247). New York: Routledge.

van der Veld, W., Saris, W. E., & Satorra, A. (2008). Jrule 2.0, User guide. Documento no publicado.