Germinación, tiempo hídrico y análisis isotópico de Vicia villosa Roth. bajo condiciones de estrés hídrico y salino

Contenido principal del artículo

Patricia Perisse
Claudia Arias
Salvador Nogues Mestres

Resumen

Vicia villosa es un recurso forrajero potencial en áreas marginales asociado con su resiembra natural y sus atributos agronómicos. Los objetivos del trabajo fueron registrar y analizar el patrón de absorción de agua, determinar el porcentaje de germinación, estimar los parámetros de tiempo hídrico y establecer la composición isotópica de 13C y 15N de la plántula cuando Vicia villosa germina en condiciones de estrés hídrico y salino. Los ensayos para determinar el patrón de absorción y la respuesta a la germinación se realizaron según el tratamiento: control (agua destilada) y soluciones con potencial agua (Ya): -0,3; -0,6; -0,8; -1 y -1,2 MPa. Los osmolitos fueron poliethylene glicol (PEG) y cloruro de sodio (NaCl). La composición isotópica de la materia orgánica total (MOT) se determinó en condiciones control, -0,8 y -1,0 MPa. La absorción de un 125 % de agua desencadenó la germinación. Se estimó que con Ya de -0,6 y -0,8 MPa se alcanzaría un 90 % de germinación en estrés hídrico y salino. Los tratamientos de PEG y NaCl mostraron un enriquecimiento en 13C y un empobrecimiento en 15N respecto al control. Los resultados experimentales indican que esta especie es más tolerante a la salinidad que al estrés hídrico.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Perisse, P., Arias, C. V. ., & Nogues Mestres, S. (2021). Germinación, tiempo hídrico y análisis isotópico de Vicia villosa Roth. bajo condiciones de estrés hídrico y salino. AgriScientia, 38(2), 89–101. https://doi.org/10.31047/1668.298x.v38.n2.32790
Sección
Artículos

Citas

Araus, J. L., Slafer, G. A., Royo, C. y Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences, 27(6), 377–412. https://doi.org/10.1080/07352680802467736

Barbour, M. M. y Farquhar, G. D. (2000). Relative humidity‐ and ABA‐induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell & Environment, 23(5), 473–485. https://doi.org/10.1046/j.1365-3040.2000.00575.x

Baskin, C. y Baskin, J. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination (2a ed.). Academic Press.

Bewley, J. y Black, M. (1994). Seeds. Physiology of Development and Germination (2a ed.). Plenum Press.

Bradford, K. (1990). A Water Relations Analysis of Seed Germination Rates. Plant Physiology, 94(2), 840–849. https://doi.org/10.1104/pp.94.2.840

Bradford, K. (1995). Water relations in seed germination. En J. Kigel y G. Galili (Eds.), Seed development and germination (pp. 351–396). Routledge. https://doi.org/10.1201/9780203740071

Bradford, K. y Still, D. (2004). Application of hydrotime analysis in seed testing. Seed Technology, 26, 75–85.

Bryant, J. A. y Hughes, S. G. (2011). Vicia. En C. Kole (Ed.), Wild crop relatives: Genomic and breeding resources legume crops and forage (pp. 273–289). Springer.

Cavallaro, V., Barbera, A. C., Maucieri, C., Gimma, G., Scalisi, C. y Patanè, C. (2016). Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecological Engineering, 95, 557–566. https://doi.org/10.1016/j.ecoleng.2016.06.040

Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V. y Ehleringer, J. R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158. https://doi.org/10.1038/38229

Copeland, L. O. y McDonald, M. B. (2001). Principles of seed science and technology (4a ed.). Springer. https://doi.org/10.1007/978-1-4615-1619-4

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. W. InfoStat (versión 2011) [Software] Córdoba, Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. http://www.infostat.com.ar.

Evans, R. D. (2001). Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science, 6(3), 121–126. https://doi.org/10.1016/S1360-1385(01)01889-1

Farahinia, P., Sadat-noori, S. A., Mortazavian, M. M., Soltani, E. y Foghi, B. (2017). Hydrotime model analysis of Trachyspermum ammi (L.) Sprague seed germination. Journal of Applied Research on Medicinal and Aromatic Plants,5, 88–91. https://doi.org/10.1016/j.jarmap.2017.04.004

Farquhar, G. D., Ehleringer, R. y Hubick, K. T. (1989). Carbon Isotope Discrimination and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537.

Finch-Savage, W. E. y Bassel, G. W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. https://doi.org/10.1093/jxb/erv490

Gómez-Favela, M. A., García-Armenta, E., Reyes-Moreno, C., Garzón-Tiznado, J. A., Perales-Sánchez, J. X. K., Caro-Corrales, J. J. y Gutiérrez-Dorado, R. (2017). Modelling of water absorption in chickpea (Cicer arietinum L.) seeds grown in Mexico’s northwest. Revista Mexicana de Ingeniera Quimica, 16, 179–191.

Gummerson, R. J. (1986). The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37(6), 729–741. https://doi.org/10.1093/jxb/37.6.729

Gunn, C. R. (1981). Seeds of Leguminosae. En R. M. Polhill y P. H. Raven (Eds.), Advances in Legume systematic (Parte 2, pp. 913–925). Kew Royal Botanic Gardens.

Hadas, A. (1977). A Simple Laboratory Approach to Test and Estimate Seed Germination Performance Under Field Conditions. Agronomy Journal, 69(4), 582–588. https://doi.org/10.2134/agronj1977.00021962006900040015x

Hadas, A., y Russo, D. (1974). Water Uptake by Seeds as Affected by Water Stress, Capillary Conductivity, and Seed‐Soil Water Contact. II. Analysis of Experimental Data. Agronomy Journal, 66(5), 647–652. https://doi.org/10.2134/agronj1974.00021962006600050013x

Haffani, S., Mezni, M., Ben Nasri, M. y Chaibi, W. (2017). Comparative leaf water relations and anatomical responses of three vetch species (Vicia narbonensis L., V. sativa L. and V. villosa Roth.) to cope with water stress. Crop and Pasture Science, 68(7), 691–702. https://doi.org/10.1071/CP17029

Hegarty, T. W. (1978). The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: a review. Plant, Cell & Environment, 1(2), 101–119. https://doi.org/10.1111/j.1365-3040.1978.tb00752.x

Hu, X. W., Fan, Y., Baskin, C. C., Baskin, J. M. y Wang, Y. R. (2015). Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine Grassland. American Journal of Botany, 102(5), 649–660. https://doi.org/10.3732/ajb.1400507

Hu, X. W., Li, T., Wang, J., Wang, Y., Baskin, C. C. y Baskin, J. M. (2013). Seed dormancy in four Tibetan Plateau Vicia species and characterization of physiological changes in response of seeds to environmental factors. Seed Science Research, 23(2), 133–140. https://doi.org/10.1017/S0960258513000019

International Atomic Energy Agency (1983a). Vienna Pee Dee Belemnite (V-PDB). (Standard No. NBS19). https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/NBS19.aspx

International Atomic Energy Agency (1983b). Potassium nitrate. (Standard No. IAEA NO3). https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/IAEA-NO-3.aspx

International Atomic Energy Agency (1978a). Ammonium sulfate. (Standard No. IAEA N1). https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/IAEA-N-1.aspx

International Atomic Energy Agency (1978b). Ammonium sulfate. (Standard No. IAEA N2). https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/IAEA-N-2.aspx

International Seed Testing Association (ISTA) (2004). International rules for seed testing. https://www.seedtest.org/en/home.html

Le Deunff, Y., Ballot, S. y Toubou, C. (1989). Hydratation des graines de lupin blanc et relargage des électrolytes. Seed Science and Technology, 17, 325–340.

Lefi, E., Medrano, H. y Cifre, J. (2004). Water uptake dynamics, photosynthesis and water use efficiency in field-grown Medicago arborea and Medicago citrina under prolonged Mediterranean drought conditions. Annals of Applied Biology, 144(3), 299–307. https://doi.org/10.1111/j.1744-7348.2004.tb00345.x

Llanes, A., Reinoso, H. y Luna, V. (2005). Germination and Early Growth of Prosopis strombulifera Seedlings in Different Saline Solutions. World Journal of Agricultural Sciences, 1(2), 120–128.

Makarov, M. I. (2009). The nitrogen isotopic composition in soils and plants: Its use in environmental studies (A Review). Eurasian Soil Science, 42, 1335–1347. https://doi.org/10.1134/S1064229309120035

Marin, P. D., Boza, P., Merkukov, L. J., Krstić, B., Petković, B. y Veljić, M. (1998). Seed sculpturing of selected European Vicia L. species (Fabaceae) and their taxomomical evaluation. Seed Science and Technology, 26, 17–32.

Michel, B. (1983). Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiology, 72, 66–70. https://doi.org/10.1104/pp.72.1.66

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Munns, R. y Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Murillo-Amador, B., López-Aguilar, R., Kaya, C., Larrinaga-Mayoral, J. y Flores-Hernández, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188(4), 235–247. https://doi.org/10.1046/j.1439-037X.2002.00563.x

Nadal-Moyano, S., Moreno-Yagüela, M. T. y Cubero-Aslmeron, J. I. (2004). Las leguminosas grano en la agricultura moderna. Mundi-Prensa

Perissé, P., Aiazzi, M. T. y Planchuelo, A. (2002). Water uptake and germination of Lupinus albus L. and Lupinus angustifolius L. under water stress. Seed Science and Technology, 30(2), 289–298.

Perissé, P. y Planchuelo, A. M. (2004). Seed coat morphology of Lupinus albus L. and Lupinus angustifolius L. in relation to water uptake. Seed Science and Technology, 32, 69–77. https://doi.org/10.15258/sst.2004.32.1.08

Piao, H. y Liu, C. (2012). Response of biomass accumulation and nodulation by Vicia villosa to soil conditions: Evidence from δ 13C and δ 15N isotopes. Chinese Journal of Geochemistry, 31, 111–119. https://doi.org/10.1007/s11631-012-0557-3

Renzi, J. P., Chantre, G. R. y Cantamutto, M. A. (2017). Vicia villosa ssp. villosa Roth field emergence model in a semiarid agroecosystem. Grass and Forage Science, 73, 146–158. https://doi.org/10.1111/gfs.12295

Sağlam, S., Day, S., Kaya, G. y Gürbüz, A. (2010). Hydropriming increases germination of lentil (Lens culinaris Medik.) under water stress. Notulae Scientia Biologicae, 2(2), 103–106.

Serret, M. D., Al-Dakheel, A. J., Yousfi, S., Fernáandez-Gallego, J. A., Elouafi, I. A. y Araus, J. L. (2020). Vegetation indices derived from digital images and stable carbon and nitrogen isotope signatures as indicators of date palm performance under salinity. Agricultural Water Management, 230, 105949 https://doi.org/10.1016/j.agwat.2019.105949

Shafaei, S. M., Masoumi, A. A. y Roshan, H. (2016). Analysis of water absorption of bean and chickpea during soaking using Peleg model. Journal of the Saudi Society of Agricultural Sciences, 15(2), 135–144. https://doi.org/10.1016/j.jssas.2014.08.003

SigmaPlot (versión 11.0) (2008) [Software]. San José, California, EE. UU: Systat Software, Inc.

Sosa, L., Llanes, A., Reinoso, H., Reginato, M. y Luna, V. (2005). Osmotic and Specific Ion Effects on the Germination of Prosopis strombulifera. Annals of Botany, 96(2), 261–267. https://doi.org/10.1093/aob/mci173

Taiz, L. y Zeiger, E. (2010). Plant Physiology (5a ed.). Sinauer Associates.

Tcherkez, G. y Hodges, M. (2008). How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo)respiration in C3 leaves. Journal of Experimental Botany, 59(7), 1685–1693. https://doi.org/10.1093/jxb/erm115

Ungar, I. (1995). Seed germination and seed-bank ecology in halophytes. En J. Kigel y G. Galili (Eds.). Seed development and germination (pp. 599–627). Routledge.

Yoneyama, T., Fujita, K., Yoshida, T., Matsumoto, T., Kambayashi, I. y Yazaki, J. (1986). Variation in natural abundance of 15N among plant parts and in 15N/14N fractionation during N2 fixation in the legume-rhizobia symbiotic system.

Plant and Cell Physiology, 27(5), 791–799. https://doi.org/10.1093/oxfordjournals.pcp.a077165

Zhang, R., Luo, K., Chen, D., Baskin, J., Baskin, C., Wang, Y. y Hu, X. (2020). Comparison of Thermal and Hydrotime Requirements for Seed Germination of Seven Stipa Species From Cool and Warm Habitats. Frontiers in Plant Science, 11, 560714. https://doi.org/10.3389/fpls.2020.560714