Estimación del balance de gases de efecto invernadero en sistemas de producción ganadera de la cuenca del río Salado
Contenido principal del artículo
Resumen
Se comparó el balance de gases efecto invernadero (GEI) de dos modelos de producción ganadera de la cuenca del río Salado, provincia de Buenos Aires. Uno, caracterizado por el uso predominante de pastizal natural en buena condición debido al pastoreo controlado (MP 1), y otro por una mayor superficie de pasturas y cultivos forrajeros, mayor carga animal y producción de carne (MP 2). Se estimaron las emisiones primarias según el IPCC (Panel Intergubernamental del Cambio Climático). Al balance de GEI se incorporaron las estimaciones de las emisiones secundarias y de la ganancia o pérdida de carbono del suelo. Las emisiones resultaron mayores en el MP 2 que en el MP 1 (4500 vs 2273 kg CO2 eq. ha-1año-1 respectivamente, p<0,01). El MP 1 secuestró carbono como carbono orgánico del suelo a una tasa de 1851 kg CO2 eq. ha-1 año-1, mientras que el MP 2 emitió carbono a una tasa de 601 kg CO2 eq. ha-1 año-1. El balance de GEI fue diez veces más negativo en el MP 2 que en el MP 1, cuyo balance resultó neutro. Los sistemas pastoriles de esta región con predominio de pastizal natural bajo pastoreo controlado pueden mitigar los efectos del cambio climático.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Cómo citar
Referencias
Allard, V., Soussana, J.F., Falcimagne, R., Berbigier, P., Bonnefond, J.M., Ceschia E… Pinares-Patino C. (2007). The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture,Ecosystems and Environment, 121 (1-2), 47-58. https://doi.org/10.1016/j.agee.2006.12.004
Ander-Egg, E. (2001). Métodos y técnicas de investigación social. Buenos Aires, Argentina: Grupo Editorial Lumen.
Batalla, I., Knudsen, M. T., Mogensen, L., del Hierro, Ó., Pinto, M. y Hermansen, J. E. (2015). Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands. Journal of Cleaner Production, 104, 121-129. https://doi.org/10.1016/j.jclepro.2015.05.043
Bavera, G. A. (2000). Digestibilidad de algunos forrajes empleados en bovinos en pastoreo. Recuperado de: https://documents.tips/documents/digestibilidad-de-algunos-forrajes-empleados-en-empleados-en-bovinos-a-pastoreo.html
Beauchemin, K. A., Janzen, H., Little, S., McAllister, T. y McGinn, S. (2010). Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agricultural Systems 103 (6), 371-379. https://doi.org/10.1016/j.agsy.2010.03.008
Beauchemin, K. A., Janzen, H., Little, S. McAllister, T. y McGinn, S. (2011). Mitigation of greenhouse gas emissions from beef production in western Canada–Evaluation using farm-based life cycle assessment. Animal Feed Science and Technology, 166-167, 663-677. https://doi.org/10.1016/j.anifeedsci.2011.04.047
Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J. P. y Smith, P. (2013). Livestock greenhouse gas emissions and mitigation potential in Europe. Global change biology, 19 (1), 3-18. https://doi.org/10.1111/j.1365-2486.2012.02786.x
Berhongaray, G., Alvarez, R., De Paepe, J., Caride, C. y Cantet, R. (2013). Land use effects on soil carbon in the Argentine Pampas. Geoderma, 192, 97-110. https://doi.org/10.1016/j.geoderma.2012.07.016
Bruce, J. P., Frome, M., Haites, E., Janzen, H., Lal, R. y Paustian, K. (1999). Carbon sequestration in soils. Journal of soil and water conservation, 54 (1), 382-389.
Casey, J. W. y Holden, N. M. (2006). Quantification of GHG emissions from sucker-beef production in Ireland. Agricultural Systems, 90 (1-3), 79-98. https://doi.org/10.1016/j.agsy.2005.11.008
Cederberg, C. y Stadig, M. (2003). System expansion and allocation in life cycle assessment of milk and beef production. The International Journal of Life Cycle Assessment, 8 (6), 350-356. https://doi.org/10.1007/BF02978508
Conant, R. T., Paustian, K. y Elliott E. T. (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications 11 (2), 343-355. https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
Conant, R.T., Cerri, C.E., Osborne, B.B. y Paustian, K. (2017). Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications 27(2), 662–668.https://doi.org/10.1002/eap.1473
Del Prado, A., Crosson, P., Olesen, J. E. y Rotz, C. (2013). Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems. Animal, 7 (S2), 373-385. https://doi.org/10.1017/S1751731113000748
Deregibus, V. A., Jacobo, E. J. y Rodríguez, A. M. (1995). Perspective: Improvement in rangeland condition of the Flooding Pampa of Argentina through controlled grazing. African Journal of Range & Forage Science, 12 (2), 92-96. https://doi.org/10.1080/10220119.1995.9647873
Deregibus, V. A. (1988). Importancia de los pastizales naturales en la República Argentina: situación presente y futura. Revista Argentina de Producción Animal, 8 (1), 67-78.
Drewer, J., Anderson, M., Levy, P. E., Scholtes, B., Helfter, C., Parker, J., … Skiba U.M. (2017). The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes. Plant Soil, 411,193–208. https://doi.org/10.1007/s11104-016-3023-x
FAO (Food and Agriculture Organization of the United Nations). (2006). Livestock's long shadow: environmental issues and options. Recuperado de: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM.
FAO (Food and Agriculture Organization of the United Nations) y New Zealand Agricultural Greenhouse Gas Research Centre. (2017). Low-emissions development of the beef cattle sector in Argentina. Reducing enteric methane for food security and livelihoods. Recuperado de http://www.fao.org/3/a-i7671e.pdf
Fernández, H. (2010). Tablas de composición de alimentos para rumiantes. Recuperado de http://www.produccion-animal.com.ar/tablas_composicion_alimentos/46-Tabla.pdf
Follett, R. F. y Reed, D. A. (2010). Soil carbon sequestration in grazing lands: societal benefits and policy implications. Rangeland Ecology & Management, 63 (1), 4-15. https://doi.org/10.2111/08-225.1
Garnett, T., Godde, C., Muller, A., Röös, E., Smith, P., de Boer, I.,...van Zanten, H. (2017). Grazed and confused? Food Climate Research Network, Environmental Change Institute, University of Oxford. Recuperado de https://www.fcrn.org.uk/projects/grazed-and-confused
Gifford, R. M., Cheney, N. P., Noble, J. C., Russel, J. S., Wellington, A. B., Zammit, C. y Barson, M. M. (1992). Australian land use, primary production of vegetation and carbon pools in relation to atmospheric carbon dioxide concentration. En Gifford, R. M. y Barson, M. M. (Eds.), Australia’s Renewable Resources: Sustainability and Global Change (pp. 151–187). Canberra, Australia: Australian Government Publishing Service.
Hidalgo, L. y Cahuépé, M. A. (1991). Producción de forraje de las comunidades de la Depresión del Salado. CREA, 149, 58-62.
IPCC (Intergovernmental Panel on Climate Change) (2006). Guidelines for National Greenhouse Gas Inventories. Recuperado de https://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/vol4.html
Jacobo, E. J. y Rodríguez, A. M. (2009). Valorización de pastizales naturales en ambientes húmedos. Indicadores de sustentabilidad. En Actas del V Congreso de la Asociación Argentina para el Manejo de los Pastizales Naturales (pp 20-29). Corrientes, Argentina: Asociación Argentina para el Manejo de los Pastizales Naturales.
Jacobo, E. J., Rodríguez, A. M. Bartoloni, N. y Deregibus, V. A. (2006). Rotational grazing effects on rangeland vegetation at a farm scale. Rangel andEcology & Management, 59 (3), 249-257. https://doi.org/10.2111/05-129R1.1
Jacobo, E. J., Rodríguez, A. M., González, J. H. y Golluscio, R. A. (2016). Efectos de la intensificación ganadera sobre la eficiencia en el uso de la energía fósil y la conservación del pastizal en la cuenca baja del río Salado, Argentina. Agriscientia. 33 (1), 1-14. https://doi.org/10.31047/1668.298x.v33.n1.16567
Jacobo, E.J., Rodríguez, A. M., Rossi, J. L., Salgado, L., y Deregibus, V. A. (2000). Rotational stocking improves winter production of Italian ryegrass on argentinian rangelands. Journal of Range Management. 53 (5), 483-488. https://doi.org/10.2307/4003648
Lal, R. (2003). Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect, Critical Reviews in Plant Sciences,22 (2),151-184. https://doi.org/10.1080/713610854
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304 (5677), 1623-1627.https://doi.org/10.1126/science.1097396
Lovett, D., Stack, L., Lovell, S., Callan, J., Flynn, B., Hawkins, M. y O’Mara, F. (2005). Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. Journal of dairy science, 88 (8), 2836-2842. https://doi.org/10.3168/jds.S0022-0302(05)72964-7
Mccune, B., y Mefford, M. J. (2006). PC-ORD. Multivariate Analysis of Ecological Data. (Version 5.13)[Software]. Gleneden Beach, Oregon: MjM Software.
McGinn, S. M., Beauchemin, K. A., Coates, T. y McGeough, E. J. (2014). Cattle Methane Emission and Pasture Carbon Dioxide Balance of a Grazed Grassland. Journal of Environmental Quality, 43 (3), 820–828. https://doi.org/10.2134/jeq2013.09.0371.
McSherry, M. E. and Ritchie, M. E. (2013). Effects of grazing on grassland soil carbon: a global review.Global Change Biology, 19 (5),1347–1357. https://doi.org/10.1111/gcb.12144
Meyer, R., Cullen, B. R., y Eckard, R. J. (2016). Modelling the influence of soil carbon on net greenhouse gas emissions from grazed pastures. Animal Production Science, 56 (3), 585-593.https://doi.org/10.1071/AN15508
Nemecek, T., Dubois, D., Huguenin-Elie, O. y Gaillard G. (2011). Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems, 104 (3), 217-232. https://doi.org/10.1016/j.agsy.2010.10.002
Nieto, M. I., Barrantes, O., Privitello, L. y Reiné, R. (2018). Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina. Sustainability, 10 (11), 4228. https://doi.org/10.3390/su10114228
O’Mara, F. P. (2011). The significance of livestock as a contributor to global greenhouse gas emissions today and inthe near future. Animal Feed Science and Technology,166–167, 7–15. https://doi.org/10.1016/j.anifeedsci.2011.04.074
Ogino, A., Orito, H., Shimada, K. y Hirooka, H. (2007). Evaluating environmental impacts of the Japanese beef cow–calf system by the life cycle assessment method. Animal Science Journal, 78 (4), 424-432. https://doi.org/10.1111/j.1740-0929.2007.00457.x
Ogle, S.M., Conant, R. T. y Paustian, K. (2004). Deriving grassland management factors for a carbon accounting method developed by the intergovernmental panel on climate change. Environmental Management, 33, 474-484. https://doi.org/10.1007/s00267-003-9105-6
Pelletier, N., Pirog, R. y Rasmussen, R. (2010). Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agricultural Systems, 103 (6), 380-389. https://doi.org/10.1016/j.agsy.2010.03.009
Rearte, D. (2011a). Situación actual y prospectiva de la situación de carne vacuna. INTA. Recuperado de: https://inta.gob.ar/documentos/situacion-actual-y-prospectiva-de-la-produccion-de-carne-vacuna
Rearte, D. (2011b). Situación actual y prospectiva de la ganadería argentina, un enfoque regional. Archivos Latinoamericanos de Producción Animal, 19 (3-4), 46-49.
Recavarren, P. M. y Martinefsky, M. J. (2009). Alerta amarillo: la degradación de los recursos forrajeros. Visión Rural, 16 (77), 29-31.
Rodríguez, A. M. y Jacobo E. J. (2010). Glyphosate effects on floristic composition and species diversity in the Flooding Pampa grassland (Argentina). Agriculture, Ecosystems & Environment, 138 (3-4), 222-231. https://doi.org/10.1016/j.agee.2010.05.003
Rodríguez, A. M. y Jacobo, E. J. (2013). Glyphosate effects on seed bank andvegetation composition of temperate grasslands. Applied Vegetation Science, 16 (1), 51-62. https://doi.org/10.1111/j.1654-109X.2012.01213.x
Rodríguez, A. M., Jacobo, E. J. y Golluscio, R. A. (2018). Glyphosate Alters Aboveground Net Primary Production, Soil Organic Carbon and Nutrients in Pampean Grasslands (Argentina). Rangeland Ecology & Management, 71(1), 119–125. https://doi.org/10.1016/j.rama.2017.07.009
Rotz, C. A., Montes, F. y Chianese, D. S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of Dairy Science, 93 (3), 1266–1282. https://doi.org/10.3168/jds.2009-2162
Schils, R., Olesen, J. E., Del Prado, A. y Soussana, J. (2007). A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livestock Science, 112 (3), 240-251. https://doi.org/10.1016/j.livsci.2007.09.005
Schulze, E., Luyssaert, S., Ciais, P., Freibauer, A., Janssens, I. A., Soussana, J. F,…the CarboEurope team. (2009). Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance. NatureGeoscience, 2, 842–850. https://doi.org/10.1038/ngeo686
Secretaría de Ambiente y Desarrollo Sustentable (2015). 3ª Comunicación Nacional de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Recuperado de https://unfccc.int/sites/default/files/resource/Argnc3.pdf
Smith, P. (2014). Do grasslands act as a perpetual sink for carbon? Global Change Biology, 20 (9), 2708–2711. https://doi.org/10.1111/gcb.12561
Soriano, A., León, R. J. C., Sala, O. E., Lavado, R. S., Deregibus, V. A., Cauhépé, M. A., … y Lemcoff, J. H. (1991). Río de la Plata grasslands. En Couplan, R. T. (ed.), Natural grasslands: introduction and Western Hemisphere (367–407). Amsterdam, Netherlands: Elsevier.
Soussana, J. T., Loiseau, P., Vuichard, N. Ceschia, E., Balesdent , J. Chevallier,T. y Arrouays, D. (2004). Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 20 (2), 219-230.https://doi.org/10.1111/j.1475-2743.2004.tb00362.x
Soussana, J., Allard, V., Pilegaard K., Ambus, P., Amman, C., Campbell, C., …Valentini, R. (2007). Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems & Environment, 121 (1-2), 121-134. https://doi.org/10.1016/j.agee.2006.12.022
Soussana, J., Tallec, T. y Blanfort, V. (2010). Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal, 4 (3), 334-350.
https://doi.org/10.1017/S1751731109990784
Stackhouse-Lawson, K., Rotz, C., Oltjen, J. y Mitloehner, F. (2012). Carbon footprint and ammonia emissions of California beef production systems. Journal of Animal Science,90(12), 4641-4655. https://doi.org/10.2527/jas.2011-4653
StatSoft, Inc. (2007). STATISTICA (version 8.0) [Software] www.statsoft.com.
Thomas, D.T., Sanderman, J., Eady, S.J., Masters, D.G.y Sanford, P. (2012). Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia. Animals, 2 (3), 316-330. https://doi.org/10.3390/ani2030316
United States Environmental Protection Agency (U.S. EPA). (2006). Global anthropogenic mon-CO2 greenhouse gas emissions: 1990–2020.
Vázquez, P. y Rojas, M. (2006). Zonificación Agro-ecológica del área de Influencia de la EEA Cuenca del Salado. (Publicación Técnica Nº 2). Buenos Aires, Argentina: Ediciones INTA.
Vázquez, P., Rojas, M. y Burges, J. (2008). Caracterización y tendencias de la ganadería bovina en la cuenca del Salado. Veterinaria Argentina 25 (248), 572-584.
Vecchio, M. C., Golluscio, R. A., Rodriguez, A. M. y Taboada, M. A. (2018). Improvement of Saline-Sodic Grassland Soils Properties by Rotational Grazing in Argentina. Rangeland Ecology & Management, 71 (6), 807- 814. https://doi.org/10.1016/j.rama.2018.04.010
Viglizzo, E. F., Ricard, M. F., Taboada, M. A. y Vázquez-Amábile, G. (2019). Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Science of the Total Environment, 661, 531–542. https://doi.org/10.1016/j.scitotenv.2019.01.130
Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R., Mortimer, S. R., Shiel, R. S., y Bardgett, R. D. (2016). Legacy effects of grassland management on soil carbon to depth. Global change biology, 22 (8), 2929-2938. https://doi.org/10.1111/gcb.13246