Cambios en las proteínas y en la distribución del tamaño de los gránulos de almidón durante el llenado del grano de triticale
Contenido principal del artículo
Resumen
En el presente trabajo se evaluaron los cambios producidos en las fracciones proteicas y en la distribución de tamaño de los gránulos de almidón durante el llenado del grano de triticale. El seguimiento se realizó sobre dos líneas de triticale (X Triticosecale Wittmack) (T y B) desde el día 14 al día 47 después de antesis (DAA). La síntesis de albúminas y globulinas disminuye a medida que el grano se va llenando, mientras que la de las fracciones de prolaminas y glutelinas aumenta. Se encontraron diferencias significativas en el contenido de proteínas entre las dos líneas en los diferentes estados; la línea B mostró una mayor velocidad de síntesis. A medida que los granos alcanzaron la madurez fisiológica, se observó un incremento en la proporción de grandes polímeros proteicos separados por electroforesis en geles de poliacrilamida en condiciones no reductoras. Las proteínas más pequeñas y las retenidas en el gel con una concentración del 12% de acrilamida disminuyeron en la línea T, pero se mantuvieron sin cambios en B desde los 14 DAA hasta madurez fisiológica. La distribución de tamaño de los gránulos de almidón se caracterizó con un analizador de tamaño de partículas.
Detalles del artículo
Número
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Cómo citar
Referencias
Aguirre, A.; O. Badiali; M. Cantarero; A. León; P. Ribotta and O. Rubiolo, 2002. Relationship of test weight and kernel properties to milling and baking quality in Argentine triticales. Cereal Research Communications 30:203-208.
American Association of Cereal Chemists, 1995. Approved Methods of the AACC. 9th ed. St. Paul, Minnesota, USA: American Association of Cereal Chemists, Inc.
Association of Official Analytical Chemists, 1998. Official Methods of Analysis. 16th ed. Arlington, Virginia, USA: AOAC International.
Baker, D. and C. Golumbic, 1970. Estimation of flour yielding capacity of wheat. Northwestern Miller 277:8-11.
Baruch, D.; L. Jenkins; H. Dengate and P. Meredith, 1983. Non-linear model of wheat starch granule distribution at several stages of development. Cereal Chemistry 60:32-35.
Betchel, D. and J. Wilson, 2000. Variability in a starch lation method and automated digital analysis system used for the study of starch size distributions in wheat flour. Cereal Chemistry 77:401-405.
Betchel, D.; I. Zayas; L. Kaleikau and Y. Pomeranz, 1990. Size distribution of wheat starch granules during endosperm development. Cereal Chemistry 67:59-63.
Bewley, J. D. and M. Black, 1994. Seed: Physiology of Development and Germination. 2nd ed. New York, USA: Plenum Press. 349 pp.
Brocklehurst, P. and A. Evers, 1977. The size distribution of starch granules in endosperm of different sized kernels of the wheat cultivar Maris Huntsman. Journal of the Science of Food and Agriculture 28:1084-1089.
Buttrose, M. S., 1963. Ultrastructure of the developing wheat endosperm. Australian Journal of Biological Science 16:305-317.
Field, J. M.; P. R. Shewry; S. R. Burgess; J. Forde; S. Parmar and B. J. Miflin, 1983. The presence of high molecular weight aggregates in the protein bodies of developing endosperms of wheat and other cereals. Journal of Cereal Science 1:33-41.
Gupta, R. B.; K. W. Shepherd and F. MacRitchie, 1991. Genetic control and biochemical properties of some high molecular weight albumins in bread wheat. Journal of Cereal Science 13:221-235.
Jönsson, J. O., 1987. Grain shrivelling and preharvest sprouting in triticale during the ripening period. Sveriges Utsädesförenings Tidskrift 1:45-52.
Kaczkowski, J.; H. Pior; J. Kwinta; S. Kos and W. Bushuk, 1987. Some analytical data of protein behaviour in developing wheat kernel. In: Lasztity, R. & Bekes, F. (eds.) Proceedings of 3rd International Workshop on Gluten Proteins. Singapore, Malaysia: World Scientific Publishing. pp. 400-416.
Khan, K. and W. Bushuk, 1976. Studies of glutenin. VIII. Subunit composition at different stages of maturity. Cereal Chemistry 53:566-573.
Khan, K. and L. Huckle, 1992. Use of multistacking gels in sodium dodecyl sulfate-polyacrylamide gel electrophoresis to reveal polydispersity, aggregation and disaggregation of the glutenin protein fraction. Cereal Chemistry 69:686-687.
Karlsson, R.; N. Bertholdsson and V. Stoy, 1987. Starch synthesis in triticale. Sveriges Utsädesförenings Tidskrift 1:31-38.
Karlsson, R.; R. Olered and A. C. Eliasson, 1983. Changes in starch granule size distribution and starch gelatinization properties during development and maturation of wheat, barley and rye. Starch 35:335-340.
Kasarda, D. D.; J. E. Bernardin and C. C. Nimmo, 1976. Wheat proteins. In: Pomeranz, Y. (ed.). Advances in Cereal Sciences and Technology. St. Paul, Minnesota, USA: American Association of Cereal Chemists, Inc. p. 158-326.
Laemmli, U., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:681-685.
León, A.; O. Rubiolo and M. C. Añón, 1996. Use of Triticale Flours in Cookies: Quality Factors. Cereal Chemistry 73:779-784.
Lupano, C. E. and M. C. Añón, 1985. Characterization of triticale proteins. Cereal Chemistry 62:174-178.
Marshall, D.; D. Mares; H. Moss and F. Ellison, 1986. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Australian Journal of Agricultural Research 35:619-630.
Morrison, W. R. and H. Gadan, 1987. The amylose and lipid contents of starch granules in developing wheat endosperm. Journal of Cereal Science 5:263-275.
Morrison, W. R. and D. C. Scott, 1986. Measurement of the dimensions of wheat starch granule populations using a Coulter Counter with 100-channel analyzer. Journal of Cereal Science 4:13-21.
Ng, P. K. and W. Bushuk, 1987. Glutenin of Marquish wheat as a reference for estimating molecular weights of glutenin subunits by sodium sulfate-polyacrylamide gel electrophoresis. Cereal Chemistry 64:324-327.
Pannozzo, J. F.; H. Eagles and M. Wootton, 2001. Changes in protein composition during grain development in wheat. Australian Journal of Agricultural Research 52:485-493.
Parker, M. L., 1985. The relationship between A-type and B-type starch granules in the developing endosperm of wheat. Journal of Cereal Science 3:271-278.
Peña, R. J. and A. Amaya, 1992. Milling and breadmaking properties of wheat-triticale grain blends. Journal of the Science of Food and Agriculture 60:483-487.
Peña, R. J. and L. Bate, 1982. Grain shrivelling in secondary hexaploid Triticale. I. Alpha-amylase activity and carbohydrate content of mature and developing grains. Cereal Chemistry 59:454-458.
Raeker, M. O.; C. S. Gaines; P. L. Finney and T. Donelson, 1998. Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chemistry 75:721-728.
Rubiolo, O. J.; A. V. Aguirre and A. E. León, 1992. Evaluación de la calidad industrial de triticales argentinos. II Congreso Argentino de Ingeniería Rural. Universidad Tecnológica Nacional, Universidad Nacional de Río Cuarto, Instituto Nacional de Tecnología Agropecuaria. Villa María, Córdoba, Argentina.
Rubiolo, O.; S. Ferretti; P. Ribotta; A. Aguirre and A. León, 1998. Incidencia del Contenido Proteico de las Harinas de Triticale sobre su Aptitud para Elaborar Galletitas. Información Tecnológica 9:87-91.
Shewry, P. R., 1999. The synthesis, processing and deposition of gluten proteins in the developing wheat grain. Cereal Foods World 44:587-589.
Shi, Y-C.; P. A. Seib and J. E. Bernardin, 1994. Effects of temperature during grain-filling on starches from six cultivars. Cereal Chemistry 71:369-383.
Zhu, J. and K. Khan, 1999. Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chemistry 76:261-269.