Desempeño de diferentes índices de vegetación de Sentinel-2 para estimar el rendimiento de soja en agricultura de precisión

Contenido principal del artículo

Gustavo Ovando
Antonio de la Casa
Guillermo Díaz
Pablo Díaz
Luciano Bressanini
Cristian Miranda

Resumen

La agricultura de precisión (AP) apunta a identificar la variabilidad del cultivo y del suelo en un lote para mejorar el manejo y optimizar el empleo de insumos. Los mapas de rendimiento son herramientas relevantes para planificar la AP. Los índices de vegetación (IV) provenientes de la teledetección permiten monitorear la variación espacio-temporal de los cultivos durante la estación de crecimiento. El objetivo del presente trabajo fue evaluar la idoneidad de diferentes IV de Sentinel-2A para estimar el rendimiento de soja (Glycine max (L.) Merril) en el marco de la AP. El estudio se realizó empleando un mapa de rendimiento de soja (campaña 2017-2018) de un lote ubicado al sur de la
ciudad de Córdoba, Argentina. Se calcularon IV empleando la diferencia, el cociente y la diferencia normalizada, tomando de a dos bandas de una imagen de Sentinel-2A del 4/2/2018. Se computó el valor absoluto del coeficiente
de correlación lineal de Pearson (|r|) entre los distintos IV y el rendimiento de soja. El mayor valor de |r| (0,726) correspondió a la diferencia entre las bandas 8 (NIR) y 12 (SWIR), permitiendo reproducir con suficiente precisión y
anticipación la variabilidad espacial de los rendimientos en el lote. 

Detalles del artículo

Cómo citar
Desempeño de diferentes índices de vegetación de Sentinel-2 para estimar el rendimiento de soja en agricultura de precisión. (2021). AgriScientia, 38(2), 1-12. https://doi.org/10.31047/1668.298x.v38.n2.25148
Sección
Artículos
Biografía del autor/a

Gustavo Ovando, Universidad Nacional de Córdoba

Agrometeorología - FCA - UNC

Profesor Asistente

Cómo citar

Desempeño de diferentes índices de vegetación de Sentinel-2 para estimar el rendimiento de soja en agricultura de precisión. (2021). AgriScientia, 38(2), 1-12. https://doi.org/10.31047/1668.298x.v38.n2.25148

Referencias

Allen, R. G., Pereira, L. S., Raes, D. y Smith, M. (Eds.) (1998). Crop evapotranspiration: Guide-lines for computing crop water requirements - FAO Irrigation and Drainage Paper 56. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO).

Anselin, L., Syabri, I. y Kho Y. (2006). GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis, 38, 5-22. https://doi.org/10.1111/j.0016-7363.2005.00671.x

Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Sicre, C. M., Le Dantec, V. y Demarez, V. (2016). Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sensing of Environment, 184, 668-681. https://doi.org/10.1016/j.rse.2016.07.030

Bolton, D. K. y Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74-84. https://doi.org/10.1016/j.agrformet.2013.01.007

Bottega, E. L., de Queiroz, D. M., de Assis de Carvalho Pinto, F., Valente, D. S. M. y de Souza, C. M. A. (2017). Precision agriculture applied to soybean: Part IIISpatial and temporal variability of yield. Australian Journal of Crop Science, 11(7), 799-805. https://doi.org/10.21475/ajcs.17.11.07.pne383

Clevers, J. G. y Gitelson, A. A. (2013). Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 23, 344-351. https://doi.org/10.1016/j.jag.2012.10.008

Colombo, R., Busetto, L., Meroni, M., Rossini, M. y Panigada, C (2016). Optical remote sensing of vegetation water content. En: P. S. Thenkabail, J. G. Lyon y A. Huete (Eds.), Hyperspectral Remote Sensing of Vegetation (pp. 227–244). CRC Press.

Crusiol, L. G. T., Carvalho, J. D. F. C., Sibaldelli, R. N. R., Neiverth, W., do Rio, A., Ferreira, L. C., Procópio, S., Mertz-Henning, L. M., Nepomuceno, A. L., Neumaier, N. y Farias, J. R. B. (2017). NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precision agriculture, 18(4), 470-490. https://doi.org/10.1007/s11119-016-9465-6

Dardanelli, J. L., Bachmeier, O. A., Sereno, R. y Gil, R. (1997). Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Research, 54, 29-38. https://doi.org/10.1016/S0378-4290(97)00017-8

Fehr, W. R. y Caviness, C. E. (1977). Stages of soybean development. (Informe Especial n° 80 de Agriculture and Home Economics Experiment Station). Iowa State University.

Forkuor, G., Dimobe, K., Serme, I. y Tondoh, J. E. (2017). Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and landcover mapping in Burkina Faso. GIScience & remote sensing, 55(3), 331-354. https://doi.org/10.1080/15481603.2017.1370169

Frampton, W. J., Dash, J., Watmough, G. y Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS journal of photogrammetry and remote sensing, 82, 83-92. https://doi.org/10.1016/j.isprsjprs.2013.04.007

Gu, Y., Brown, J. F., Verdin, J. P. y Wardlow, B. (2007). A five year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34 (6). https://doi.org/10.1029/2006GL029127

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. y Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote sensing of environment, 90(3), 337-352. https://doi:10.1016/j.rse.2003.12.013

Immitzer, M., Vuolo, F. y Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8(3), 166. https://doi:10.3390/rs8030166

Khanal, S., Fulton, J. y Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22-32. https://doi.org/10.1016/j.compag.2017.05.001

Kovar, M., Brestic, M., Sytar, O., Barek, V., Hauptvogel, P. y Zivcak, M. (2019). Evaluation of Hyperspectral Reflectance Parameters to Assess the Leaf Water Content in Soybean. Water, 11(3), 443. https://doi.org/10.3390/w11030443

Li, M., Chu, R., Yu, Q., Islam, A., Chou, S. y Shen, S. (2018). Evaluating Structural, Chlorophyll-Based and Photochemical Indices to Detect Summer Maize Responses to Continuous Water Stress. Water, 10(4), 500. https://doi.org/10.3390/w10040500

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E. y Gascon, F. (Mayo, 2016). Sentinel-2 SEN2COR: L2A processor for users. En Proceedings of the Living Planet Symposium (pp. 9-13). Prague, Czech Republic. European Space Agency.

Lu, S., Lu, X., Zhao, W., Liu, Y., Wang, Z. y Omasa, K. (2015). Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces. Journal of experimental botany, 66(18), 5625-5637. https://doi.org/10.1093/jxb/erv270

Mladenova, I. E., Bolten, J. D., Crow, W. T., Anderson, M. C., Hain, C. R., Johnson, D. M. y Mueller, R. (2017). Intercomparison of soil moisture, evaporative stress, and vegetation indices for estimating corn and soybean yields over the US. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(4), 1328-1343. https://doi.org/10.1109/JSTARS.2016.2639338

Nigam, R., Vyas, S. S., Bhattacharya, B. K., Oza, M. P. y Manjunath, K. R. (2017). Retrieval of regional LAI over agricultural land from an Indian geostationary satellite and its application for crop yield estimation. Journal of

Spatial Science, 62, 103-125. https://doi.org/10.1080/14498596.2016.1220872

Peng, Y., Nguy-Robertson, A., Arkebauer, T. y Gitelson, A. (2017). Assessment of canopy chlorophyll content retrieval in maize and soybean: implications of hysteresis on the development of generic algorithms. Remote Sensing, 9(3), 226. https://doi.org/10.3390/rs9030226

Petersen, L. (2018). Real-Time Prediction of Crop Yields from MODIS Relative Vegetation Health: A Continent-Wide Analysis of Africa. Remote Sensing, 10(11), 1726. https://doi.org/10.3390/rs10111726

Ramoelo, A., Cho, M., Mathieu, R. y Skidmore, A. K. (2015). Potential of Sentinel-2 spectral configuration to assess rangeland quality. Journal of applied remote sensing, 9, 094096. https://doi:10.1117/1.JRS.9.094096

Rollán, A. D. C. y Bachmeier, O. A. (2014). Compactación y retención hídrica en Haplustoles de la provincia de

Córdoba (Argentina) bajo siembra directa. Agriscientia, 31, 1-10. https://doi.org/10.31047/1668.298x.v31.n1.9835

Rouse, J. W., Haas, R. H., Schell, J. A. y Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. En Proceedings of the Third Earth Resources Technology Satellite Symposium (pp. 309–317). Washington, DC. NASA.

Saito, G., Uto, K., Yonezawa, C., Sasaki, Y., Yoshino, K., Oda, K., Sato, J., Oyoshi, K. y Mizukami, Y. (Mayo 2019). Determination of planting crops using satellite data at Shonai plain in Japan. En IOP Conference Series: Earth and Environmental Science (Vol. 284,012009). IOP Publishing.

Schultz, B., Immitzer, M., Formaggio, A., Sanches, I., Luiz, A. y Atzberger, C. (2015). Self-guided segmentation

and classification of multi-temporal Landsat 8 images for crop type mapping in southeastern Brazil. Remote

Sensing, 7(11), 14482-14508. https://doi.org/10.3390/rs71114482

Tanaka, S., Kawamura, K., Maki, M., Muramoto, Y., Yoshida, K. y Akiyama, T. (2015). Spectral index for quantifying leaf area index of winter wheat by field hyperspectral measurements: a case study in Gifu prefecture, central Japan. Remote Sensing, 7(5), 5329-5346. https://doi.org/10.3390/rs70505329

Viña, A., Gitelson, A. A., Rundquist, D. C., Keydan, G., Leavitt, B. y Schepers, J. (2004). Monitoring maize (Zea mays L.) phenology with remote sensing. Agronomy Journal, 96(4), 1139-1147. https://doi.org/10.2134/agronj2004.1139

Viña, A. y Gitelson, A. A. (2005). New developments in the remote estimation of the fraction of absorbedphotosynthetically active radiation in crops. Geophysical Research Letters, 32(17). https://doi.org/10.1029/2005GL023647

Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C. y Ng, W. (2018). How much does multi-temporal Sentinel-2 data

improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72,

122–130. https://doi.org/10.1016/j.jag.2018.06.007

Xie, Q., Dash, J., Huete, A., Jiang, A., Yin, G., Ding, Y., Peng, D., Halla, C. C., Brown, L., Shi, Y., Ye, H., Dong, Y. y Huang W. (2019). Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 80, 187-195. https://doi.org/10.1016/j.jag.2019.04.019

Xu, C., Qu, J. J., Hao, X., Cosh, M. H., Zhu, Z. y Gutenberg, L. (2020). Monitoring crop water content for corn and

soybean fields through data fusion of MODIS and Landsat measurements in Iowa. Agricultural Water Management, 227, 105844. https://doi.org/10.1016/j.agwat.2019.105844

Xue, J. y Su, B. (2017). Significant remote sensing vegetation indices: a review of developments and applications. Journal of Sensors, 1353691. https://doi.org/10.1155/2017/1353691