Cambios en la composición físico química, polifenoles totales y actividad antioxidante de apio fresco (Apium graveolens L.) deshidratado por aire caliente y por liofilización

Contenido principal del artículo

Roberto Ordoñez-Araque
Christian Narváez-Aldáz

Resumen

La industria de alimentos busca que además de propiedades nutricionales, los alimentos otorguen propiedades funcionales. El apio ha sido utilizado desde tiempos inmemoriales pero poco se ha conocido sobre su contenido en compuestos bioactivos. En esta investigación se propuso medir los cambios en las características físico químicas, polifenoles totales (PT) y capacidad antioxidante (CA) después de aplicar deshidratación por aire caliente (DA) y liofilización (LF) con dos diferentes tipos de corte, en forma de vara (V) y rebanada (R). Se comprobó que los tratamientos de deshidratación pueden potenciar algunas características en el apio. Al comparar los resultados el tratamiento de (LF-R) presentó las mejores características con menor actividad de agua, 46 % de fibra dietaria total conformada por 41 % de fibra insoluble y 5 % de fibra soluble, 377,69 mg EAG/100g en contenido total de polifenoles y una capacidad antioxidante de 82,17 μmol ET/100g. Estos resultados permiten concluir que el apio es una materia prima con atributos funcionales y se lo puede industrializar con tecnologías de deshidratación, lo que permitirá tener un producto con compuestos bioactivos y larga vida útil.

Detalles del artículo

Cómo citar
Cambios en la composición físico química, polifenoles totales y actividad antioxidante de apio fresco (Apium graveolens L.) deshidratado por aire caliente y por liofilización. (2019). AgriScientia, 36(2), 57-65. https://doi.org/10.31047/1668.298x.v36.n2.24036
Sección
Artículos

Cómo citar

Cambios en la composición físico química, polifenoles totales y actividad antioxidante de apio fresco (Apium graveolens L.) deshidratado por aire caliente y por liofilización. (2019). AgriScientia, 36(2), 57-65. https://doi.org/10.31047/1668.298x.v36.n2.24036

Referencias

Anesini, C., Ferraro, G. and Filip, R. (2008). Total polyphenol content and antioxidant activity of commercially available tea (Camellia sinensis) in Argentina. Journal of Agricultural and Food Chemistry, 56(19), 9225–9229. doi.org/10.1021/jf8022782

Berk, Z. (2018). Dehydration. En A. M. Clarck (Ed), Food Process Engineering and Technology (Third Edition) (513–566). Haifa, Israel: Academic Press, Elsevier. doi.org/10.1016/B978-0-12-812018-7.00022-1

Bosanek, C., Bosanek, C., Silliman, K., Kirk, L. and Frankel, E. (1996). Total Phenolic Content And Antioxidant Potential Of Commercial Grape Juice. Journal of the American Dietetic Association, 96(9), A35. doi.org/10.1016/S0002-8223(96)00433-6

Bunea, C., Pop, N., Babeş, A., Matea, C., Dulf, F. and Bunea, A. (2012). Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chemistry Central Journal, 6(1), 1-9. doi.org/10.1186/1752-153X-6-66

Chen, L., Cheng, C. and Liang, J. (2015). Effect of esterification condensation on the Folin–Ciocalteu method for the quantitative measurement of total phenols. Food Chemistry, 170, 10–15. doi.org/10.1016/J.FOODCHEM.2014.08.038

Defraeye, T. (2017). Impact of size and shape of fresh-cut fruit on the drying time and fruit quality. Journal of Food Engineering, 210, 35–41. doi.org/10.1016/J.JFOODENG.2017.04.004

Demirhan, E. and Özbek, B. (2011). Color change kinetics of celery leaves undergoing microwave heating. Chemical Engineering Communications, 198(10), 1189–1205. doi.org/10.1080/00986445.2010.525106

Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C. and Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421. doi.org/10.1016/J.FOODCHEM.2010.06.077

Jaiswal, A., Abu-Ghannam, N. and Gupta, S. (2012). A comparative study on the polyphenolic content, antibacterial activity and antioxidant activity of different solvent extracts of Brassica oleracea vegetables. International Journal of Food Science & Technology, 47(2), 223–231. doi.org/10.1111/j.1365-2621.2011.02829.x

Jha, S., Singh, H. and Prakash, P. (2017). Dietary fiber and human health: An introduction. En R. A. Samaan (Ed), Dietary Fiber for the Prevention of Cardiovascular Disease (1–22). Los Angeles, CA, United States: Academic Press, Elsevier. doi.org/10.1016/B978-0-12-805130-6.00001-X

Kamiloglu, S., Pasli, A., Ozcelik, B., Van Camp, J. and Capanoglu, E. (2015). Colour retention, anthocyanin stability and antioxidant activity in black carrot (Daucus carota) jams and marmalades: Effect of processing, storage conditions and in vitro gastrointestinal digestion. Journal of Functional Foods, 13, 1–10. doi.org/10.1016/j.jff.2014.12.021

Karam, M., Petit, J., Zimmer, D., Baudelaire, E. and Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. doi.org/10.1016/J.JFOODENG.2016.05.001

Kaur, P., Ghoshal, G. and Jain, A. (2019). Bio-utilization of fruits and vegetables waste to produce β-carotene in solid-state fermentation: Characterization and antioxidant activity. Process Biochemistry, 76, 155–164. doi.org/10.1016/J.PROCBIO.2018.10.007

Liu, J.-X., Feng, K., Wang, G.-L., Xu, Z.-S., Wang, F. and Xiong, A.-S. (2018). Elevated CO2 induces alteration in lignin accumulation in celery (Apiumgraveolens L.). Plant Physiology and Biochemistry, 127, 310–319. doi.org/10.1016/J.PLAPHY.2018.04.003

Luzia, D. and Jorge, N. (2014). Study of antioxidant activity of non-conventional Brazilian fruits. Journal of Food Science and Technology, 51(6), 1167–1172. doi.org/10.1007/s13197-011-0603-x

Marszałek, K., Krzyżanowska, J., Woźniak, Ł. and Skąpska, S. (2016). Kinetic modelling of tissue enzymes inactivation and degradation of pigments and polyphenols in cloudy carrot and celery juices under supercritical carbon dioxide. The Journal of Supercritical Fluids, 117, 26–32. doi.org/10.1016/J.SUPFLU.2016.07.016

Moumita, S., Das, B., Hasan, U. and Jayabalan, R. (2018). Effect of long-term storage on viability and acceptability of lyophilized and spray-dried synbiotic microcapsules in dry functional food formulations. LWT-Food Science and Technology, 96, 127–132. doi.org/10.1016/J.LWT.2018.05.030

Moussaoui, H., Bahammou, Y., Idlimam, A., Lamharrar, A. and Abdenouri, N. (2019). Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. Food and Bioproducts Processing, 114, 12–22. doi.org/10.1016/J.FBP.2018.11.002

Ordoñez-Araque, R. and Barat, J. (2017). Evaluación de un Sistema de Enmascaramiento de Olor de Muestras de Ajo, Mediante un Sistema de Nariz Electrónica. Revista Politécnica, 40(1), 13–19.

Ordóñez-Araque, R. and Pardo-Yoza, L. (2018). Cuantificación de hierro, calcio y fósforo en procesos térmicos aplicados al borojó (Borojoa patinoi Cuatrec). Idesia, 36, 275-281. doi.org/10.4067/S0718-34292018005000802

Pastell, H., Putkonen, T. and Rita, H. (2019). Dietary fibre in legumes, seeds, vegetables, fruits and mushrooms: Comparing traditional and semi-automated filtration techniques. Journal of Food Composition and Analysis, 75, 1-7. doi.org/10.1016/j.jfca.2018.09.011

Parlak, M., Çiçek, G. and Blanco-Canqui, H. (2018). Celery harvesting causes losses of soil: A case study in Turkey. Soil and Tillage Research, 180, 204–209. doi.org/10.1016/J.STILL.2018.03.011

Pejcz, E., Czaja, A., Wojciechowicz-Budzisz, A., Gil, Z. and Spychaj, R. (2017). The potential of naked barley sourdough to improve the quality and dietary fibre content of barley enriched wheat bread. Journal of Cereal Science, 77, 97–101. doi.org/10.1016/J.JCS.2017.08.007

Priecina, L., Karklina, D. and Kince, T. (2018). The impact of steam-blanching and dehydration on phenolic, organic acid composition, and total carotenoids in celery roots. Innovative Food Science & Emerging Technologies, 49, 192–201. doi.org/10.1016/J.IFSET.2018.01.008

Qin, Z., Petersen, M. and Bredie, W. (2018). Flavor profiling of apple ciders from the UK and Scandinavian region. Food Research International, 105, 713–723. doi.org/10.1016/J.FOODRES.2017.12.003

Statistical Program for Social Sciences (SPSS) (version 11.0)[Computer Program](2001). Chicago, United States: SPSS.

Tadapaneni, R. K., Yang, R., Carter, B. and Tang, J. (2017). A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures. Food Research International, 102, 203–212. doi.org/10.1016/J.FOODRES.2017.09.070

Vallespir, F., Rodríguez, Ó., Eim, V., Rosselló, C. and Simal, S. (2018). Freezing pre-treatments on the intensification of the drying process of vegetables with different structures. Journal of Food Engineering, 239, 83–91. doi.org/10.1016/J.JFOODENG.2018.07.008

Vélez, M., Perotti, M., Hynes, E. and Gennaro, A. (2019). Effect of lyophilization on food grade liposomes loaded with conjugated linoleic acid. Journal of Food Engineering, 240, 199–206. doi.org/10.1016/J.JFOODENG.2018.07.033

Villanueva-Tiburcio, J., Condezo-Hoyos, L. and Asquieri, E. (2010). Antocianinas, ácido ascórbico, polifenoles totales y actividad antioxidante, en la cáscara de camu-camu (Myrciaria dubia (H.B.K) McVaugh). Ciência e Tecnologia de Alimentos, 30, 151–160. doi.org/10.1590/S0101-20612010000500023

Viña, S., Osornio, M. and Chaves, A. (2007). Quality changes in fresh-cut celery as affected by heat treatment and storage. Journal of the Science of Food and Agriculture, 87(7), 1400–1407. doi.org/10.1002/jsfa.2880

Waghmare, R. and Annapure, U. (2015). Integrated effect of sodium hypochlorite and modified atmosphere packaging on quality and shelf life of fresh-cut cilantro. Food Packaging and Shelf Life, 3, 62–69. doi.org/10.1016/J.FPSL.2014.11.001

Weber, F. and Passon, M. (2019). Characterization and Quantification of Polyphenols in Fruits. En R. R. Watson (Ed), Polyphenols in Plants (Second Edition) (111–121). Tucson, AZ, United States: Academic Press, Elsevier. doi.org/10.1016/B978-0-12-813768-0.00007-4

Xu, H., Ding, Y., Xin, X., Wang, W. and Zhang, D. (2018). Dietary fiber intake is associated with a reduced risk of ovarian cancer: a dose-response meta-analysis. Nutrition Research, 57, 1–11. doi.org/10.1016/J.NUTRES.2018.04.011

Yang, X., Yang, Y., Zhou, R. and Bian, L. (2001). Determination of total, soluble and insoluble dietary fiber in foods by enzymatic-gravimetric method. Journal of Hygiene Research, 30(6), 377–385.

Yao, Y. and Ren, G. (2011). Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT - Food Science and Technology, 44(1), 181–185. doi.org/10.1016/J.LWT.2010.07.001

Zhan, L., Hu, J., Lim, L., Pang, L., Li, Y. and Shao, J. (2013). Light exposure inhibiting tissue browning and improving antioxidant activity of fresh-cut celery (Apiumgraveolens var. dulce). Food Chemistry, 141(3), 2473–2478. doi.org/10.1016/j.foodchem.2013.05.035