Latent semantic analysis using three documents by Pierre Bourdieu
DOI:
https://doi.org/10.58312/2591.3905.v8.n13.47619Keywords:
Latent semantic analysis, Bourdieu, Pierre 1930-2002Abstract
Objective: It applies latent semantic analysis to three published by the French sociologist Pierre Bourdieu and translated into Spanish.
Methods: It uses latent semantic analysis to apply this technique, the R programming language was used in the RStudio integrated development environment (EDI), in which the pdftools, tm, lsa and LSAfun package was used.
Results: The term-document matrix is composed of 2,646, the Tk matrix is composed of 3,138 words in total for the three documents. The word “fields” has a semantic relationship between document two and document three. The word “capital” has a semantic relationship between document one and document two, while no semantic relationship is evident between the three documents and the word “scientific”, the word “cultural” and the word taste. The third matrix Sk shows that there is a semantic relationship between document two (The three states of cultural capital) and document three (On symbolic power). This analysis does not show a relationship with document one (Criteria and social bases of taste). The similarity of the words “power”, “social” and “cultural” contained in the three documents that were used in this analysis, cosine similarity was applied to them.
Downloads
References
Arango, L. E.; Pantoja, J.; Velásquez, C. (2023). A content analysis of the Central Bank's press releases in Colombia. Latin American Journal of Central Banking, 4(3), 100097,
Contreras Kallens, P.; Dale, R. (2018) Exploratory mapping of theoretical landscapes through word use in abstracts. Scientometrics 116(3), 1641-1674.
Deena, G.; Raja, K. (2022). Keyword extraction using latent semantic analysis for question generation. Journal of Applied Science and Engineering, 26(4), 501-510.
Deerwester, S.; Dumais, S. T.; Furnas, G. W.; Landauer, T. K.; Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407.
Feinerer, I.; Hornik, K. (2023). tm: Text Mining Package, 2023. https://CRAN.R-project.org/package=tm
Fischer, A., Voracek, M., Tran, U. S. (2023). Semantic and sentiment similarities contribute to construct overlaps between mindfulness, Big Five, emotion regulation, and mental health. Personality and Individual Differences, (210), 112241.
Foltz, P. W.; Kintsch, W., Landauer, T. K. (1998). The measurement of textual coherence with latent semantic analysis. Discourse Processes, 25(2-3), 285-307. DOI: 10.1080/01638539809545029
Guenther, F. (2024). LSAfun: Applied Latent Semantic Analysis (LSA) Functions, 2023. https://cran.r-project.org/web/packages/LSAfun/index.html.
Gutiérrez, R. M. (2005). Análisis Semántico Latente: ¿teoría psicológica del significado? Revista Signos, 38(59), 303-323.
Lam, L. C. Q., Toai, T. K.; Vaclav, S. (2023) A latent semantic analysis method for ranking the results of human disease search engine. Bulletin of Electrical Engineering and Informatics, 12(2), 1189-1195.
Landauer, T. K.; Foltz, P. W., Laham, D. (1998). An introduction to latent semantic analysis. Discourse processes, 25(2-3), 259-284.
Magerman, T., Van Looy, B., Song, X. (2010). Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications. Scientometrics, 82(), 289-306.
Mayopu, R. G., Wang, Y. Y., Chen, L. S. (2024). Analyzing Online Fake News Using Latent Semantic Analysis: Case of USA Election Campaign. Big Data Cognitive Computation, 7(81). https://doi.org/10.3390/bdcc7020081
Ooms, J. (2023). Package pdftools, 2023. https://cran.r-project.org/web/packages/pdftools/pdftools.pdf
Mamani Roque, M. (2018). Descomposición en valores singulares y análisis semántico latente. 44h. Tesis (Máster) -- Universidad Politécnica de Valencia. Departamento de Matemática Aplicada.
Sanguri, K.; Bhuyan, A.; Patra, S. (2020). A semantic similarity adjusted document co-citation analysis: a case of tourism supply chain. Scientometrics, 125(1), 233-269.
Sharma, C.; Sakhuja, S.; Nijjer, S. (2022). Recent trends of green human resource management: Text mining and network analysis. Environmental Science and Pollution Research, 29(56), 84916-84935.
Van Eck, N.; Waltman, L.; Noyons, E.; Buter, R. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 8(3), 581-596.
Venegas, R. (2011). Evaluación de resúmenes en español con Análisis Semántico Latente: una implementación posible. Revista signos, 44(75), 85-102
Wild, F. (2022). Latent Semantic Analysis. https://cran.r-project.org/web/packages/lsa/lsa.pdf
Zhang, L.; Xia, Y. (2024). Text Study of Reader Magazine in the Context of Big Data. Applied Mathematics and Nonlinear Sciences, 9(1), 1-14. https://sciendo.com/article/10.2478/amns.2023.2.00284