Obtención de compuesto de Ti – HA por sinterizado a baja temperatura.

Autores

  • Luciano Grinschpun docente
  • Carlos R. Oldani Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba
  • E.M. Schneiter Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba

Palavras-chave:

Biomaterials, composites, hydroxyapatite, sintering, titanium

Resumo

Resumen—Desde el punto de vista de la ingeniería, uno de los factores que determina el éxito del proceso de osteointegración de una
prótesis metálica es el relacionado con el material del implante. En este sentido, el estudio de la respuesta del organismo en presencia de un
cuerpo extraño describe la respuesta inmunológica del organismo al material implantado. Desde la década del cuarenta del siglo pasado, se
vienen realizando estudios para describir la biología de los fenómenos que ocurren cuando se introduce un cuerpo extraño en el organismo.
Entre los diversos materiales estudiados, el titanio es un material bioinerte que no desarrolla procesos inflamatorios generando el rechazo
del material. Pero debido a la resistencia a la corrosión no promueve los procesos de osteointegración ya que no hay unión entre el titanio y
tejido oseo. En este trabajo se exponen los resultados obtenidos en el desarrollo de un método de laboratorio para fabricar mediante técnica
pulvimetalúrgica, un biomaterial a base de titanio que contiene hidroxiapatita como agente bioactivo.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] Albrektsson, T., Brånemark, P.-I., Hansson, H.-A., y Lindström, J.

(1981). “Osseointegrated titanium implants: requirements for ensu-

ring a long-lasting, direct bone-to-implant anchorage in man”. Acta

Orthopaedica Scandinavica, 52(2):155–170.

2] Anderson, J. M. (2001). “Biological responses to materials”. Annual

review of materials research, 31(1):81–110.

[3] Balbinotti, P. (2011). Elaboração e caracterização de compósitos ti-

tânio/hidroxiapatita por metalurgia do pó para aplicações biomédica,

Tesis doctoral. Universidade do Estado de Santa Catarina - UDESC,

[4] Branemark, P.-I. (1977). “Osseointegrated implants in the treatment

of the edentulous jaw. experience from a 10-year period”. Scand. J.

Plast. Reconstr. Surg. Suppl., 16.

[5] Brånemark, P.-I., Breine, U., Adell, R., Hansson, B., Lindström, J., y

Ohlsson, Å. (1969). “Intra-osseous anchorage of dental prostheses:

I. experimental studies”. Scandinavian journal of plastic and recons-

tructive surgery, 3(2):81–100.

[6] Breine, U., Johansson, B., Roylance, P., Roeckert, H., y Yoffey, J.

(1964). “Regeneration of bone marrow. a clinical and experimental

study following removal of bone marrow by curettage.” Acta anato-

mica, 59:1.

[7] Canavosio L., G. M. (2010). Sinterizado de titanio con Hidroxiapati-

ta. Dept. De Materiales y Tecnologia, FCEFyN. UNC.

[8] Comín, R., Cid, M. P., Grinschpun, L., Oldani, C., y Salvatierra, N. A.

(2017). “Titanium-hydroxyapatite composites sintered at low tem-

perature for tissue engineering: in vitro cell support and biocompa-

tibility”. Journal of Applied Biomaterials & Functional Materials,

15(2):176–183.

[9] Faig-Martí, J. y Gil-Mur, F. (2008). “Los recubrimientos de hidroxia-

patita en las prótesis articulares”. Revista española de cirugía ortopé-

dica y traumatología, 52(2):113–120.

[10] Forni, F., Marzagalli, M., Tesei, P., y Grassi, A. (2013). “Platelet

gel: applications in dental regenerative surgery”. Blood Transfusion,

11(1):102.

[11] Froum, S. J., Wallace, S. S., Tarnow, D. P., y Cho, S.-C. (2002). “Efec-

to del plasma rico en plaquetas sobre el crecimiento óseo y la osteoin-

tegración en injertos de seno maxilar en seres humanos: tres informes

de casos bilaterales”. Revista Internacional de Odontología Restau-

radora & Periodoncia, 6(1):45–53.

[12] L. E. Valenti, N. Maggia, C. P. D. P. y Giacomelli, C. E. (2015). “Di-

ferentes estrategias para la preparación de recubrimientos bioactivos

sobre titanio”. En: XIX Congreso Argentino de Fisicoquímica y Quí-

mica Inorgánica.

[13] Lario-Femenía, J., Amigó Mata, A., Vicente-Escuder, Á., Segovia-

López, F., y Amigó, V. (2016). “Desarrollo de las aleaciones de ti-

tanio y tratamientos superficiales para incrementar la vida útil de los

implantes”. Revista de metalurgia, 52(4):e084–e096.

[14] Le Guéhennec, L., Soueidan, A., Layrolle, P., y Amouriq, Y. (2007).

“Surface treatments of titanium dental implants for rapid osseointe-

gration”. Dental materials, 23(7):844–854.

[15] Leventhal, G. S. (1951). “Titanium, a metal for surgery”. J Bone Joint

Surg Am, 33(2):473–474.

[16] Marcelo, T. M., Livramento, V., Oliveira, M. V. d., y Carvalho, M. H.

(2006). “Microstructural characterization and interactions in ti-and

tih2-hydroxyapatite vacuum sintered composites”. Materials Re-

search, 9(1):65–71.

[17] Melero, H., Fernández, J., y Guilemany Casadamon, J. M. (2011).

“Recubrimientos bioactivos: Hidroxiapatita y titania”. Biomecánica,

19(1):35–48.

[18] Momose, R. (2009). Desenvolvimento de interfaces com gradiente

funcional para a sinterização simultânea do titânio/hidroxiapatita,

Tesis doctoral. Instituto Tecnológico de Aeronáutica – ITA, Brazil,

São José dos Campos, Brazil.

[19] Oldani, C. y Padilla, R. L. (2015). “Titanio poroso para implantes

óseos”. En: VI Congreso Latinoamericano de ingeniería biomédica.

pp. 261–4.

[20] Park, D.-S., Kim, I.-S., Kim, H., Chou, A. H. K., Hahn, B.-D., Li, L.-

H., y Hwang, S.-J. (2010). “Improved biocompatibility of hydroxya-

patite thin film prepared by aerosol deposition”. Journal of Biomedi-

cal Materials Research Part B: Applied Biomaterials, 94(2):353–358.

[21] Paz, A., Martín, Y., Pazos, L. M., Parodi, M. B., Ybarra, G. O., y Gon-

zález, J. E. (2011). “Obtención de recubrimientos de hidroxiapatita

sobre titanio mediante el método biomimético”. Revista de Metalur-

gia, 47(2):138–145.

[22] Rolfe, B., Zhang, B., Campbell, G., Wang, H., Mooney, J., Campbell,

J., Huang, Q., Jahnke, S., Le, S.-J., y Chau, Y.-Q. (2011). The fibrotic

response to implanted biomaterials: implications for tissue enginee-

ring. Citeseer.

[23] Schroeder, A., van der Zypen, E., Stich, H., y Sutter, F. (1981). “The

reactions of bone, connective tissue, and epithelium to endosteal im-

plants with titanium-sprayed surfaces”. Journal of maxillofacial sur-

gery, 9:15–25.

[24] Weiss, C. (1987). “A comparative analysis of fibro-osteal and osteal

inegration and other variables that affect long term bone maintenance

around dental implants”. J Oral Implantol, 13:467–487.

[25] Yang, Y., Kim, K.-H., Agrawal, C. M., y Ong, J. L. (2004). “Inter-

action of hydroxyapatite–titanium at elevated temperature in vacuum

environment”. Biomaterials, 25(15):2927–2932.

Publicado

2021-10-31

Edição

Seção

Ingeniería y Tecnología

Como Citar

Obtención de compuesto de Ti – HA por sinterizado a baja temperatura. (2021). Revista De La Facultad De Ciencias Exactas, Físicas Y Naturales, 8(2), 55-58. https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/32233