Estudio Aerodinámico de Perfiles con Espesor con el Método de Red de Vórtices

Authors

  • Marcelo Federico Valdez Facultad de Ingeniería, Universidad Nacional de Salta (UNSa) Instituto de Investigaciones en Energía no Convencional (INENCO), UNSa-CONICET
  • Santiago Ribero 1. Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT), Univ. Nac. de Córdoba -- CONICET, Av. Vélez Sarsfield 1611, 5000 Córdoba, Argentina 2. Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nac. de Córdoba, Córdoba, Argentina
  • Sergio Preidikman 1. Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT), Univ. Nac. de Córdoba -- CONICET, Av. Vélez Sarsfield 1611, 5000 Córdoba, Argentina 2. Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nac. de Córdoba, Córdoba, Argentina

Keywords:

Thick Airfoils, Aerodynamics, Point Vortices, Potential Flow

Abstract

In this effort, a numerical study is presented regarding the aerodynamic characteristics of wing sections through the vortex lattice method (VLM). The developed computational implementation allows one to simulate steady-state, quasi-steady and unsteady two- dimensional problems. In this article, the estimation error of the computational tool is quantified in terms of the geometry of the wing section: thickness and curvature of the mean line (camber), and of the discretization. It is observed that for the NACA profiles, the error of the estimation of the lift slope increases when the thickness increases but remains bounded between 5 % and 20 % for thicknesses up to 12%. Regarding the camber, the error of the estimation of the lift at zero angle of attack increases with increasing camber and can reach values up to 50%. Finally, for the profile DU97W300, the numerical tool shows a lot of potential since it can predict with high precision the experimental pressure distribution for relatively low angles of attack and also estimates the lift slope and lift for zero angle of attack with an error less than 10%.

Downloads

Download data is not yet available.

References

[1] Abbott, I. H. A. y Von Doenhoff, A. E. (1959). Theory of wing sec- tions, including a summary of airfoil data. Dover Publications.

[2] Antman, S. (2005). Nonlinear Problems of Elasticity, volumen 107 de Applied Mathematical Sciences. Springer.

[3] Baldacchino, D., Ferreira, C., Tavernier, D. D., Timmer, W. A., y van Bussel, G. J. W. (2018). “Experimental parameter study for passive vortex generators on a 30% thick airfoil”. Wind Energy, 21(9):745– 765.

[4] Chow, C. Y. y Huang, M. K. (1982). “The initial lift and drag of an impulsively started airfoil of finite thickness”. Journal of Fluid Mechanics, 118:393–409.

[5] Drela, M. (1989). “Xfoil: An analysis and design system for low rey- nolds number airfoils”. En: Low Reynolds number aerodynamics, pp. 1–12. Springer.

[6] Drela, M. y Giles, M. B. (1987). “Viscous-inviscid analysis of transonic and low reynolds number airfoils”. AIAA journal, 25(10):1347–1355.

[7] Graham, J. M. R. (1983). “The lift on an aerofoil in starting flow”. Journal of Fluid Mechanics, 133:413–425.

[8] Jacobs, E., Ward, K., y Pinkerton, R. (1935). “The characteristics of 78 related airfoils sections from tests in the variable-density wind tunnel”. Reporte técnico No 460, National Advisory Commitee for Aeronautics (NACA), Washington D.C.

[9] Katz, J. (2019). “Convergence and accuracy of potential-flow methods”. Journal of Aircraft, 56(6):2371–2375.

[10] Katz, J. y Plotkin, A. (2001). Low-speed aerodynamics. Cambridge university press.

[11] Mook, D. T. y Dong, B. (1994). “Perspective: numerical simulations of wakes and blade-vortex interaction”. J. Fluids Eng., 116(1):5–21.

[12] Prandtl, L. y Tietjens, O. G. (1934). Fundamentals of hydro-and ae- romechanics. Republished by Dover in 1957.

[13] Pullin, D. I. y Perry, A. E. (1980). “Some flow visualization experi- ments on the starting vortex”. Journal of Fluid Mechanics, 97(2):239– 255.

[14] Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M., y Edwards, J. (2014). “Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shed- ding”. Journal of Fluid Mechanics, 751:500.

[15] Roesler, B. T. y Epps, B. P. (2018). “Discretization requirements for vortex lattice methods to match unsteady aerodynamics theory”. AIAA Journal, 56(6):2478–2483.

[16] Rohatgi, A. (2020). “Webplotdigitizer: Version 4.3”.

[17] Saffman, P. G. (1992). Vortex dynamics. Cambridge university press.

[18] Valdez, M. F., Preidikman, S., y Larsen, S. E. F. (2017). “Análisis aerodinámico de perfiles con múltiples superficies para control y re- dirección de flujo”. Mecánica Computacional, 35(26):1517–1539.

[19] Wagner, H. (1925). “Über die entstehung des dynamischen auftriebes von tragflügeln”. ZAMM-Journal of Applied Mathematics and Mecha- nics/Zeitschrift für Angewandte Mathematik und Mechanik, 5(1):17– 35.

Downloads

Published

2021-04-30

Issue

Section

Ingeniería y Tecnología

How to Cite

Estudio Aerodinámico de Perfiles con Espesor con el Método de Red de Vórtices. (2021). Revista De La Facultad De Ciencias Exactas, Físicas Y Naturales, 8(1), 15-30. https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/32320