El aprendizaje espacial y su relevancia en anfibios

Contenido principal del artículo

Rubén N. Muzio
María Florencia Daneri

Resumen

Este artículo presenta información actualizada acerca de las estrategias y bases neurales del aprendizaje espacial, poniendo especial énfasis en la información que se dispone en anfibios. El análisis de las estrategias de aprendizaje ha demostrado que los anfibios, al igual que muchos otros grupos, son capaces de orientarse utilizando tanto una estrategia de giro (tomando como referencia su propio cuerpo) como de guía (usando una clave visual cercana o faro) y que la distancia de esta clave visual al reforzador posee un efecto sobre la tasa de aprendizaje. También se evalúa el uso de dos o más claves visuales ambientales de referencia y su relación con lo que inicialmente se llamó “mapa cognitivo”. Con respecto a las bases neurales, se resalta el papel fundamental del pallium medial (área homóloga al hipocampo de mamíferos) para la orientación espacial en anfibios, pero se cuestiona que su equivalencia funcional sea completa.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Muzio, R. N., & Daneri, M. F. (2013). El aprendizaje espacial y su relevancia en anfibios. Revista Argentina De Ciencias Del Comportamiento, 5(3), 38–49. https://doi.org/10.32348/1852.4206.v5.n3.5552
Sección
Revisiones
Biografía del autor/a

Rubén N. Muzio, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Laboratorio de Biología del Comportamiento

Grupo de Aprendizaje y Cognición Comparada (IBYME-CONICET), Argentina.

Cátedra de Biología del Comportamiento e Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires (UBA), Argentina

María Florencia Daneri, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Laboratorio de Biología del Comportamiento

Grupo de Aprendizaje y Cognición Comparada (IBYME-CONICET), Argentina.

Cátedra de Biología del Comportamiento e Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires (UBA), Argentina

Citas

Adler, K. (1980). Individuality in the use of orientation cues by green frogs. Animal Behaviour, 28, 413-425.

Biegler, R. & Morris, R. G. M. (1996). Landmark stability: Further studies pointing to a role in spatial learning. The Quarterly Journal of Experimental Psychology, 49B(4), 307-345.

Bingman, V. P. (1990). Spatial navigation in birds. In Kesner, R. & Olton, D. S. (Eds.), Neurobiology of Comparative Cognition (pp. 423-477). Hillsdale, NJ: Erlbaum.

Bingman, V. P. (1992). The importance of comparative studies and ecological validity for understanding hippocampal structure and cognitive function. Hippocampus, 2, 213-220.

Bingman, V. P., Bagnoli, P., Ioalé, P. & Casini, G. (1989). Behavioral and anatomical studies of the avian hippocampus. In Chanpalay, V. & Kohler, C. (Eds.), The Hippocampus: New vistas (pp. 379-394). New York: Alan R. Liss.

Boice, R., Quanty, C. B. & Williams, R. C. (1974). Competition and possible dominance in turtles, toads and frogs. Journal of Comparative and Physiological Psychology, 86, 1116-1131.

Brattstrom, B. H. (1990). Maze learning in the fire‐bellied toad, Bombina orientalis. Journal of Herpetology, 24 (1), 44-47.

Cartwright, B. A. & Collett, T. S. (1983). Landmark learning in bees: Experiments and models. Journal of Comparative Physiology, 151, 521-543.

Chamizo, V. D. (2002). Spatial Learning: Conditions and Basic Effects. Psicológica, 23, 33-57.

Chamizo, V. D. & Rodrigo, T. (2004). Effect of absolute spatial proximity between a landmark and a goal. Learning and Motivation, 35 (2), 102-114.

Chamizo, V. D., Sterio, D. & Mackintosh, N. J. (1985). Blocking and overshadowing between intra-maze and extra-maze cues: A test of the independence of locale and guidance learning. Quarterly Journal of Experimental Psychology, 37B, 235-253.

Cheng, K. (1989). The vector sum model of pigeon landmark use. Journal of Experimental Psychology: Animal Behavior Processes, 15, 366-375.

Cheng, K. (2008). Whither geometry? Troubles of the geometric module. Trends in Cognitive Sciences, 12, 355-361.

Cheng, K. & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12, 1-23.

Cheng, K. & Spetch, M. L. (2001). Blocking in landmarkbased search in honeybees. Animal Learning and Behavior, 29 (1), 1-9.

Cheng, K., Collett, T. S., Pickhard, A. & Wehner, R. (1987). The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal. Journal of Comparative Physiology A, 161, 469-475.

Cheung, A., Stürzl, W., Zeil, J. & Cheng, K. (2008). Information content of panoramic images: II. Viewbased navigation in nonrectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes, 34, 15-30.

Collett, T. S., Cartwrigth, B. A. & Smith, B. A. (1986). Landmark learning and visuospatial memories in gerbils. Journal of Comparative Physiology A, 158, 835-851.

Dall’Antonia, P. & Sinsch, U. (2001). In search of water: orientation behaviour of dehydrated natterjack toads, Bufo calamita. Animal Behaviour, 61, 617-629.

Daneri, M. F. (2010). Aprendizaje espacial en el anfibio anuro Bufo arenarum. Estrategias, fenómenos y bases neurales. Tesis doctoral. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Daneri, M. F. Casanave E. B. & Muzio R N. (2011). Control of spatial orientation in terrestrial toads (Rhinella arenarum). Journal of Comparative Psychology, 125(3), 296-307.

Daneri, M. F., Casanave, E. B. & Muzio, R. N. (2013). Use of local visual landmarks for spatial orientation in terrestrial toads (Rhinella arenarum): The role of distance to a goal. Enviado para su publicación a Journal of Comparative Psychology.

Daneri, M. F. & Muzio, R. N. (en preparación). Ensombrecimiento, bloqueo e inhibición latente entre claves visuales de referencia en el anfibio Rhinella arenarum.

Day, L. B., Crews, D. & Wilczynski, W. (1999). Spatial and reversal learning in congeneric lizards with different foraging strategies. Animal Behaviour, 57, 395-407.

Day, L. B., Ismail, N. & Wilczynski, W. (2003). Use of Position and Feature Cues in Discrimination Learning by the Wiptail Lizard (Cnemidophorus inornatus). Journal of Comparative Psychology, 117 (4), 440-448.

Duellman, W. E. & Trueb, L. (1986). Biology of amphibians. New York: McGraw‐Hill.

Eichenbaum, H., Stewart, C. & Morris, R. G. M. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10 (11), 3531-3542.

Etienne, A. S., Maurer, R., Georgakopoulos, J. & Griffin, A. (1999). Dead reckoning (path integration), landmarks, and representation of space in a comparative perspective. In Golledge, R. G. (Ed.), Wayfinding Behavior: Cognitive mapping and other spatial processes (pp. 197-228). Baltimore, MD: The Johns Hopkins University Press.

Fenton, A. A., Arolfo, M. P., Nerad, L. & Bures, J. (1994). Place Navigation in the Morris Water Maze under Minimum and Redundant Extra-maze Cue Conditions. Behavioral and Neural Biology, 62, 178-189.

Freeland, W. J. & Martin, K. C. (1985). The rate of range expansion by Bufo marinus in Northern Australia, 1980‐1984. Australian Wildlife Research, 12, 555-559.

Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.

Good, M. (2002). Spatial Memory and Hippocampal Function: Where are we now? Psicológica, 23, 109-138.

Greding, E. J. (1971). Comparative rates of learning in frogs (Ranidae) and toads (Bufonidae). Caribbean Journal of Science, 11 (3-4), 203-208.

Grisham, W. & Powers, A. (1990). Effects of Dorsal and Medial Cortex Lesions on Reversal in Turtles. Physiology and Behavior, 47, 43-49.

Hodges, H. (1996). Maze procedures: the radial‐arm and water maze compared. Cogntive Brain Research, 3, 167-181.

Ingle, D. & Sahagian, D. (1973). Solution of a spatial constancy problem by goldfish. Physiological Psychology, 1, 83-84.

Jarrard, L. E. (1986). Selective hippocampal lesions and behavior: implications for current research and theorizing. In Iversen, R. L. & Pribram, K. H. (Eds.), The hippocampus, Vol. 4 (pp. 93-126). New York: Plenum Press.

Kamil, A. C. & Cheng, K. (2001). Way-finding and landmarks: the multiple-bearings hypothesis. Journal of Experimental Biology, 2043, 103-113.

López, J. C. (1999). Memoria espacial y corteza medial en la tortuga Pseudemys scripta. Tesis doctoral. Facultad de Psicología. Universidad de Sevilla.

López, J. C., Broglio, C, Rodríguez, F, Thinus‐Blanc, C. & Salas, C. (1999). Multiple spatial learning strategies in golfish (Carassius auratus). Animal Cognition, 2, 109-120.

López, J. C., Gómez, Y., Rodríguez, F., Broglio, C., Vargas, J. P. & Salas, C. (2001). Spatial learning in turtles. Animal Cognition, 4, 49-59.

López, J. C., Vargas, J. P., Gómez, Y. & Salas, C. (2003). Spatial and non‐spatial learning in turtles: the role of medial cortex. Behavioral Brain Research, 143, 109-120.

Lüddecke, H. (2003). Space use, cave choice and spatial learning in the dendrobatid frog Colostethus palmatus. Amphibia‐Reptilia, 24, 37-46.

Mackintosh, N. J. (1974). The Psychology of Learning. London: Academic Press.

Mackintosh, N. J. (1983). Conditioning and Associative Learning. Oxford: Oxford University Press.

Mackintosh, N. J. (2002). Do not ask whether they have a cognitive map, but how they find their way about. Psicológica, 23, 165-185.

Macphail, E. M. (1982). Brain and Intelligence in Vertebrates. Oxford: Claredon Press.

Maguire, E. A., Woollett, K. & Spiers, H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16, 1091-1101.

Milgram, N. W., Adams, B., Callahan, H., Head, E., Mackay, B., Thirlwell, C. & Cotman, C. W. (1999). Landmark Discrimination Learning in the Dog. Learning and Memory, 6, 54-61.

Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239-260.

Muzio, R. N. (1999). Aprendizaje instrumental en anfibios. Revista Latinoamericana de Psicología, 31, 35-47.

Muzio, R. N. (2012). Aprendizaje en anfibios, el eslabón perdido: Un modelo simple cerebral en el estudio de conductas complejas. Cuadernos de Herpetología, 27(2), Online.

Nadel, L. (1991). The hippocampus and space revisited. Hippocampus, 1, 221-229.

Northcutt, R. G. & Ronan, M. (1992). Afferent and efferent connections of the bullfrog medial pallium. Brain, Behavior and Evolution, 40, 1-16.

O'Keefe, J. & Conway, D. H. (1978). Hippocampus place units in the freely moving rat: Why they fire where they fire. Experimental Brain Research, 31, 573-590.

O’Keefe, J. & Conway, D. H. (1980). On the trail of the hippocampal engram. Physiological Psychology, 8, 229-238.

O’Keefe, J. & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.

Olton, D. S., Becker, J. T. & Handelman, G. E. (1979). Hippocampus, space and memory. Behavioral and Brain Sciences, 2, 313-365.

Papini, M. R., Salas, C. & Muzio, R. N. (1999). Análisis comparativo del aprendizaje en vertebrados. Revista Latinoamericana de Psicología, 31, 15-34.

Prados, J. & Redhead, E. S. (2002). Preexposure effects in spatial learning: from gestaltic to associative and attentional cognitive maps. Psicológica, 23, 59-78.

Ratliff, K. R. & Newcombe, N. S. (2008). Reorienting When Cues Conflict: Evidence for an Adaptive-Combination View. Psychological Science, 19(12), 1301-1307.

Revusky, S. H. (1971). The role of interference in association over delay. In Honig, W. K. & James, P. H. R. (Eds), Animal memory (pp. 155-213). New York: Academic Press.

Roberts, A. D. L. & Pearce, J. M. (1998). Control of spatial behavior by an unstable landmark. Journal of Experimental Psychology: Animal Behavior Processes, 24, 172-184.

Roberts, A. D. L. & Pearce, J. M. (1999). Blocking in the Morris swimming pool. Journal of Experimental Psychology: Animal Behavior Processes, 25, 225-235.

Rodrigo, T. (2002). Navigational strategies and models. Psicológica, 23, 3-32.

Rodrigo, T., Chamizo, V. D., McLaren, I. P. L. & Mackintosh, N. J. (1997). Blocking in the spatial domain. Journal of Experimental Psychology: Animal Behavior Processes, 23, 110-118.

Rodrigo, T., Sansa, J., Baradad, P. & Chamizo, V. D. (2006). Generalization gradients in a navigation task with rats. Learning and Motivation, 37, 247-268.

Rodríguez, F., López, J. C., Vargas, J. P. & Salas, C. (1998). Fundamentos de Psicobiología. Manual de Laboratorio. Sevilla: Kronos.

Salas, C., Broglio, C. & Rodríguez, F. (2003). Evolution of forebrain and spatial cognition in vertebrales: conservation across diversity. Brain, Behavior and Evolution, 62, 72-82.

Salas, C., Rodríguez, F., Vargas, J. P., Durán, E. & Torres, B. (1996). Spatial learning and memory deficits alter telencephalic ablation in goldfish trained in place and turn maze procedures. Behavioral Neuroscience, 110, 965-980.

Sánchez-Moreno, J., Rodrigo, T., Chamizo, V. D. & Mackintosh, N. J. (1999). Overshadowing in the spatial domain. Animal Learning and Behaviour, 27, 391-398.

Sherry, D. F. & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94, 439-454.

Sheynikhovich, D., Chavarriaga, R., Strösslin, T., Arleo, A. & Gerstner, W. (2009). Is there a geometric module for spatial orientation? Insights from a rodent navigational model. Psychological Review, 116, 540-566.

Sinsch, U. (1987). Orientation behaviour of toads (Bufo bufo) displaced from the breeding site. Journal of Comparative Physiology A, 161, 715-727.

Sinsch, U. (2006). Orientation and navigation in Amphibia. Marine and Freshwater Behavior and Physiology, 39 (1), 65-71.

Sotelo, M. I., Bingman, V. P. & Muzio, R. N. (en preparación). Geometric orientation in amphibians: Evolutionary conserved spatial navigation? Spetch, M. L. & Wilkie, L (1994). Pigeon’s use of landmarks presented in digitalized images. Learning and Motivation, 25, 245-275.

Testa, T. J. (1975). Effects of similarity of location and temporal intensity pattern of conditioned and unconditioned stimuli on the acquisition of conditioned suppression in rats. Journal of Experimental Psychology: Animal Behavior Processes, 1, 114-121.

Thompson, T. A. & Boice, R. (1975). Attempts to train frogs: Review and experiments. Journal of Biological Psychology, 17, 3-13.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189-208.

Tommasi, L., Chiandetti, C., Pecchia, T., Sovrano, V. A. & Vallortigara, G. (2012). From natural geometry to spatial cognition. Neuroscience and Biobehavioral Reviews, 36, 799-824.

Tunner, H. G. (1992). Locomotory behaviour in water frogs from Neusiedlersee (Austria, Hungary). 15 km migration of Rana lessonae and its hybriodogenetic associate Rana esculenta. Proceedings of the 6th Ordinary General Meeting SHE, Budapest, 449-452.

Vargas, J. P., Bingman, V. P., Portavella, M., López, J. C. (2006). Telencephalon and geometric space in goldfish. The European Journal of Neuroscience, 24(10), 2870-2878.

Volpe, B. T., Davis, H. P., Towle, A. & Dunlap, W.P. (1992). Loss of hippocampal CA1 neurons correlates with memory impairment in rats with ischemic or neurotoxin lesions. Behavioral Neuroscience, 106, 457-464.