Efecto de la osteocalcina y el ejercicio físico, sobre la función cognitiva en adultos y adultos mayores: una revisión sistemática
Contenido principal del artículo
Resumen
Ante la práctica de ciertos tipos de ejercicio físico, la Osteocalcina (OC) y sus variantes (ucOCN) pueden ser estimuladas y por su capacidad de atravesar la barrera hematoencefálica, establecer una asociación con el funcionamiento de la corteza temporal derecha y estimular el aprendizaje y la memoria. En este trabajo se realizó una revisión sistemática de la literatura del efecto de la OC sobre funciones cognitivas implicadas en adultos y adultos mayores, que practican diversos tipos de ejercicio físico sustentada bajo la guía PRISMA en bases de datos como: PubMed, Scielo, Google Académico, Cochrane library y Redalyc de 2019 a 2023. Por los criterios de exclusión, de 35 artículos se eliminaron aquellos sin corte experimental, basados en modelos murinos y niños. Se obtuvieron finalmente 16 artículos. Concluimos reafirmando una conexión entre OC, ejecución de ejercicio físico y asociación entre funciones motoras y cognitivas como: atención, memoria y funciones ejecutivas.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La RACC aplicará la licencia internacional de atribuciones comunes creativas (Reconocimiento 4.0 Internacional: https://creativecommons.org/licenses/by/4.0/).
Bajo esta licencia, se permite cualquier explotación de la obra, incluyendo la explotación con fines comerciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción. Esta licencia es una licencia libre según la Freedom Defined. La única condición es que siempre y en todos los casos se cite a los autores y a la fuente original de publicación (i.e., RACC). Esta licencia fue desarrollada para facilitar el acceso abierto, gratuito y libre a trabajos originales científicos y artísticos.
Cómo citar
Referencias
Aktitiz, S., Atakan, M. M., Turnagöl, H. H., & Kosar, S. N. (2022). Interleukin-6, undercarboxylated osteocalcin, and brain-derived neurotrophic factor responses to single and repeated sessions of high-intensity interval exercise. Peptides, 157, Artículo 170864. https://doi.org/10.1016/j.peptides.2022.170864
Armamento-Villareal, R., Aguirre, L., Waters, D. L., Napoli, N., Qualls, C., & Villareal, D. T. (2020). Effect of aerobic or resistance exercise, or both, on bone mineral density and bone metabolism in obese older adults while dieting: A randomized controlled trial. Journal of Bone and Mineral Research, 35(3), 430–439. https://doi.org/10.1002/jbmr.3905
Bakhtiyari, M., Fathi, M., & Hejazi, K. (2021). Effect of eight weeks of aerobic interval training on the serum concentrations of alkaline phosphatase, osteocalcin and parathyroid hormone in middle-aged men. Gene, Cell and Tissue, 8(3), Artículo e111298. https://doi.org/10.5812/gct.111298
Battafarano, G., Rossi, M., Marampon, F., Minisola, S., & Del Fattore, A. (2020). Bone control of muscle function. International Journal of Molecular Sciences, 21(4), Artículo 1178. https://doi.org/10.3390/ijms21041178
Blanski Grden, C. R., Vieira de Sousa, J. A., Andreani Cabral, L. P., Reche, P. M., Bordin, D., & de Oliveira Borges, P. K. (2020). Syndrome of frailty and the use of assistive technologies in elderly / Síndrome da fragilidade e o uso de tecnologias assistivas em idosos. Revista De Pesquisa Cuidado é Fundamental Online, 12(1), 499–504. https://doi.org/10.9789/2175-5361.rpcfo.v12.8594
Bonanno, M. S., Rey-Sarabia, M., Seijo, M., & Zeni, S. N. (2019). Rol de la osteocalcina más allá del hueso. Actualizaciones en Osteología, 15(2), 78–93. https://osteologia.org.ar/articulo/3091/rol-de-la-osteocalcina-m-s-all-del-hueso
Borda, M. G., Soennesyn, H., Steves, C. J., Osland Vik-Mo, A., Pérez-Zepeda, M. U., & Aarsland, D. (2019). Frailty in older adults with mild dementia: Dementia with Lewy bodies and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders Extra, 9(1), 176–183. https://doi.org/10.1159/000496537
Castle, M., Fiedler, N., Pop, L. C., Schneider, S. J., Schlussel, Y., Sukumar, D., Hao, L., & Shapses, S. A. (2020). Three doses of vitamin D and cognitive outcomes in older women: A double-blind randomized controlled trial. The Journals of Gerontology. Series A, 75(5), 835–842. https://doi.org/10.1093/gerona/glz041
Chauhan, P., Jethwa, K., Rathawa, A., Chauhan, G., & Mehra, S. (2021). The anatomy of the hippocampus. En R. Pluta (Ed.), Cerebral Ischemia (pp. 17–30). Exon Publications. https://doi.org/10.36255/exonpublications.cerebralischemia.2021.hippocampus
Chow, L. S., Gerszten, R. E., Taylor, J. M., Pedersen, B. K., van Praag, H., Trappe, S., Febbraio, M. A., Galis, Z. S., Gao, Y., Haus, J. M., Lanza, I. R., Lavie, C. J., Lee, C.-H., Lucia, A., Moro, C., Pandey, A., Robbins, J. M., Stanford, K. I., Thackray, A. E., … Snyder, M. P. (2022). Exerkines in health, resilience and disease. Nature Reviews. Endocrinology, 18(5), 273–289. https://doi.org/10.1038/s41574-022-00641-2
Duff, M. C., Covington, N. V., Hilverman, C., & Cohen, N. J. (2020). Semantic memory and the hippocampus: Revisiting, reaffirming, and extending the reach of their critical relationship. Frontiers in Human Neuroscience, 13, Artículo 471. https://doi.org/10.3389/fnhum.2019.00471
Hiam, D., Landen, S., Jacques, M., Voisin, S., Alvarez-Romero, J., Byrnes, E., Chubb, P., Levinger, I., & Eynon, N. (2021). Osteocalcin and its forms respond similarly to exercise in males and females. Bone, 144, Artículo 115818. https://doi.org/10.1016/j.bone.2020.115818
Kandel, E. R. (2019). La nueva biología de la mente. Paidós Ibérica.
Kang, Y., Yao, J., Gao, X., Zhong, H., Song, Y., Di, X., Feng, Z., Xie, L., & Zhang, J. (2023). Exercise ameliorates anxious behavior and promotes neuroprotection through osteocalcin in VCD‐induced menopausal mice. CNS Neuroscience & Therapeutics, 29(12), 3980–3994. https://doi.org/10.1111/cns.14324
Karsenty, G. (2023). Osteocalcin: A multifaceted bone-derived hormone. Annual Review of Nutrition, 43, 55–71. https://doi.org/10.1146/annurev-nutr-061121-091348
Khrimian, L., Obri, A., Ramos-Brossier, M., Rousseaud, A., Moriceau, S., Nicot, A.-S., Mera, P., Kosmidis, S., Karnavas, T., Saudou, F., Gao, X.-B., Oury, F., Kandel, E., & Karsenty, G. (2017). Gpr158 mediates osteocalcin’s regulation of cognition. The Journal of Experimental Medicine, 214(10), 2859–2873. https://doi.org/10.1084/jem.20171320
Kohrt, W. M., Malley, M. T., Coggan, A. R., Spina, R. J., Ogawa, T., Ehsani, A. A., Bourey, R. E., Martin, W. H., & Holloszy, J. O. (1991). Effects of gender, age, and fitness level on response of VO2max to training in 60-71 years old. Journal of Applied Physiology, 71(5), 2004–2011. https://doi.org/10.1152/jappl.1991.71.5.2004
Kortas, J., Ziemann, E., & Antosiewicz, J. (2020). Effect of HFE gene mutation on changes in iron metabolism induced by Nordic walking in elderly women. Clinical Interventions in Aging, 15, 663–671. https://doi.org/10.2147/CIA.S252661
Lee, J. H., & Jun, H.-S. (2019). Role of myokines in regulating skeletal muscle mass and function. Frontiers in Physiology, 10, Artículo 42. https://doi.org/10.3389/fphys.2019.00042
Lee, T. H.-Y., Formolo, D. A., Kong, T., Lau, S. W.-Y., Ho, C. S.-L., Leung, R. Y. H., Hung, F. H.-Y., & Yau, S.-Y. (2019). Potential exerkines for physical exercise-elicited pro-cognitive effects: Insight from clinical and animal research. International Review of Neurobiology, 147, 361–395. https://doi.org/10.1016/bs.irn.2019.06.002
Lester, M. E., Urso, M. L., Evans, R. K., Pierce, J. R., Spiering, B. A., Maresh, C. M., Hatfield, D. L., Kraemer, W. J., & Nindl, B. C. (2009). Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone, 45(4), 768–776. https://doi.org/10.1016/j.bone.2009.06.001
Levinger, I., Zebaze, R., Jerums, G., Hare, D. L., Selig, S., & Seeman, E. (2011). The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporosis International, 22(5), 1621–1626. https://doi.org/10.1007/s00198-010-1370-7
Liu, M., Li, J., Li, J., Yang, H., Yao, Q., Zheng, X., Zhang, Z., & Qin, J. (2022). Altered spontaneous brain activity in patients with diabetic osteoporosis using regional homogeneity: A resting-state functional magnetic resonance imaging study. Frontiers in Aging Neuroscience, 14, Artículo 851929. https://doi.org/10.3389/fnagi.2022.851929
Mohammad Rahimi, G. R., Bijeh, N., & Rashidlamir, A. (2020). Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Experimental Physiology, 105(3), 449–459. https://doi.org/10.1113/ep088036
Mohammad Rahimi, G. R., Mohammad Rahimi, N., Niyazi, A., & Alikhajeh, Y. (2021). Osteocalcin and muscle metabolism: the efficacy of exercise training. Journal of Exercise & Organ Cross Talk, 1(1), 47–48. https://doi.org/10.22034/JEOCT.2021.285149.1003
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & the PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Müller, P., Duderstadt, Y., Lessmann, V., & Müller, N. G. (2020). Lactate and BDNF: Key mediators of exercise induced neuroplasticity? Journal of Clinical Medicine, 9(4), Artículo 1136. https://doi.org/10.3390/jcm9041136
Nakamura, M., Imaoka, M., & Takeda, M. (2020). Interaction of bone and brain: osteocalcin and cognition. International Journal of Neuroscience, 131(11), 1115–1123. https://doi.org/10.1080/00207454.2020.1770247
Nakamura, M., Imaoka, M., Hashizume, H., Tazaki, F., Nakao, H., Hida, M., Omizu, T., Kanemoto, H., Kamei, I., & Takeda, M. (2021). Association between cognitive decline and decreased serum osteocalcin levels in community-dwelling older people. Cognition & Rehabilitation, 2, 20-26. https://doi.org/10.69202/0000000329
Nicolini, C., Michalski, B., Toepp, S. L., Turco, C. V., D’Hoine, T., Harasym, D., Gibala, M. J., Fahnestock, M., & Nelson, A. J. (2020). A single bout of high-intensity interval exercise increases corticospinal excitability, brain-derived neurotrophic factor, and uncarboxylated osteolcalcin in sedentary, healthy males. Neuroscience, 437, 242–255. https://doi.org/10.1016/j.neuroscience.2020.03.042
Otero-Montoto, T., & Durán-Bouza, M. (2023). Síndrome de fragilidad física y desempeño lingüístico en adultos mayores: Un estudio exploratorio. Revista de Investigación en Logopedia, 13(2), Artículo e84794. https://doi.org/10.5209/rlog.84794
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016
Pedersen, B. K. (2019). Physical activity and muscle–brain crosstalk. Nature Reviews. Endocrinology, 15, 383–392. https://doi.org/10.1038/s41574-019-0174-x
Ross, R. D., Olali, A. Z., Shi, Q., Hoover, D. R., Sharma, A., Weber, K. M., French, A. L., McKay, H., Tien, P. C., Yin, M. T., & Rubin, L. H. (2022). Brief report: Undercarboxylated osteocalcin is associated with cognition in women with and without HIV. Journal of Acquired Immune Deficiency Syndromes, 91(2), 162–167. https://doi.org/10.1097/qai.0000000000003043
Rostamizadeh, M., Elmieh, A., & Rahmani nia, F. (2019). The Effect of Aerobic and Resistance Exercises on Serum Osteocalcin levels, Insulin Resistance and Pancreas Beta Cell Function in Overweight Men: A Clinical Trial. Journal of Rafsanjan University of Medical Sciences, 18(1), 55–70. http://journal.rums.ac.ir/article-1-4420-en.html
Rubert, M., & De la Piedra, C. (2020). La osteocalcina: de marcador de formación ósea a hormona; y el hueso, un órgano endocrino. Revista de Osteoporosis y Metabolismo Mineral, 12(4), 146–151. https://doi.org/10.4321/s1889-836x2020000400007
Sadowska-Krępa, E., Rzetecki, A., Zając-Gawlak, I., Nawrat-Szołtysik, A., Rozpara, M., Mikuľáková, W., Stanek, A., & Pałka, T. (2023). Comparison of selected prooxidant-antioxidant balance and bone metabolism indicators and BDNF levels between older women with different levels of physical activity. BMC Geriatrics, 23, Artículo 489. https://doi.org/10.1186/s12877-023-04205-5
Shan, C., Ghosh, A., Guo, X.-Z., Wang, S.-M., Hou, Y.-F., Li, S.-T., & Liu, J.-M. (2019). Roles for osteocalcin in brain signalling: implications in cognition- and motor-related disorders. Molecular Brain, 12, Artículo 23. https://doi.org/10.1186/s13041-019-0444-5
Shin, S., & Nam, H.-Y. (2023). Effect of obesity and osteocalcin on brain glucose metabolism in healthy participants. Brain Sciences, 13(6), Artículo 889. https://doi.org/10.3390/brainsci13060889
Smith, C., Lewis, J. R., Sim, M., Lim, W. H., Lim, E. M., Blekkenhorst, L. C., Brennan-Speranza, T. C., Adams, L., Byrnes, E., Duque, G., Levinger, I., & Prince, R. L. (2021). Higher undercarboxylated to total osteocalcin ratio is associated with reduced physical function and increased 15-year falls-related hospitalizations: The Perth Longitudinal Study of Aging Women. Journal of Bone and Mineral Research, 36(3), 523–530. https://doi.org/10.1002/jbmr.4208
Smith, C., Voisin, S., Al Saedi, A., Phu, S., Brennan-Speranza, T., Parker, L., Eynon, N., Hiam, D., Yan, X., Scott, D., Blekkenhorst, L. C., Lewis, J. R., Seeman, E., Byrnes, E., Flicker, L., Duque, G., Yeap, B. B., & Levinger, I. (2020). Osteocalcin and its forms across the lifespan in adult men. Bone, 130, Artículo 115085. https://doi.org/10.1016/j.bone.2019.115085
Vints, W. A. J., Levin, O., Fujiyama, H., Verbunt, J., & Masiulis, N. (2022). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Frontiers in Neuroendocrinology, 66, Artículo 100993. https://doi.org/10.1016/j.yfrne.2022.100993
Wang, J. Y., Grigsby, J., Placido, D., Wei, H., Tassone, F., Kim, K., Hessl, D., Rivera, S. M., & Hagerman, R. J. (2022). Clinical and molecular correlates of abnormal changes in the cerebellum and globus pallidus in fragile X premutation. Frontiers in Neurology, 13, Artículo 797649. https://doi.org/10.3389/fneur.2022.797649
Winberg, J., Rentz, J., Darwish, L., Swardfager, W., & Mitchell, J. (2020). SUN-237 sex differences in the effect of osteocalcin and exercise on memory and cognition. Journal of the Endocrine Society, 4(Supplement 1), Artículo A216. https://doi.org/10.1210/jendso/bvaa046.427
Wu, P.-H., Lin, Y.-T., Chen, C.-S., Chiu, Y.-W., Tsai, J.-C., Kuo, P.-L., Hsu, Y.-L., Ljunggren, Ö., Fellström, B., & Kuo, M.-C. (2020). Associations of bone turnover markers with cognitive function in patients undergoing hemodialysis. Disease Markers, 2020, Artículo 8641749. https://doi.org/10.1155/2020/8641749