IMPACT OF ENVIRONMENTAL VARIABLES ON PROTEIN IN SOYBEANS

Authors

  • M. J. Llebaria Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata
  • A. Cerrudo Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata
  • N. Izquierdo Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata.

Keywords:

protein in grains, soybean, climatic variables, hydric or thermal stress

Abstract

Soybean products are among the few plant-based foods with complete proteins with nine essential amino acids. For this reason, soybeans have become an important source of vegetable protein for human and animal consumption, with 98% of its crop destined for animal feed (Goldsmith et al., 2004) and the remaining percentage for direct human consumption or in processed products. Global soybean demand is currently linked to meat consumption and is constantly growing. Soybean production increased significantly, from 0.26 million to almost 56 million ha in South America from 1961 to 2014, driven by population increase and increased demand for meat. Global soybean cultivation is concentrated mainly in the United States, Brazil and Argentina, with India a distant fourth. The first three countries together account for 80% of total production and dominate world exports. Brazil is projected Brazil to be the most important region for soy protein production, driven by the high production of soybeans (Cerrudo, et al., 2023). The quality of meal depends basically on its protein concentration. Soybean meal has a balanced amino acid profile, low production cost and stable supply. Among vegetable proteins, soy protein stands out for its high quality and proven health benefits. Its protein quality is comparable to

References

Assefa, Y., Purcell, L.C., Salmeron, M., Naeve, S., Casteel, S.N., Kovács, P., Archontoulis, S., Licht, M., Below, F., Kandel, H., Lindsey, L.E., Gaska, J., Conley, S., Shapiro, C., Orlowski, J.M., Golden, B.R., Kaur, G., Singh, M., Thelen, K., Laurenz, R., Davidson, D., Ciampitti, I.A., 2019. Assessing variation in US soybean seed composition (protein and oil). Front. Plant Sci. 10, 298.

Bolon, Y.-T., Joseph, B., Cannon, S.B., Graham, M.A., Diers, B.W., Farmer, A.D., May, G.D., Muehlbauer, G.J., Specht, J.E., Jin Tu, Z., Weeks, N., Xu, W.W., Shoemaker, R.C., Vance, C.P. 2010. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol. 10, 41.

Boroomandan P, Khoramivafa M, Haghi Y, Ebrahimi A. 2009. The effects of nitrogen starter fertilizer and plant density on yield, yield components and oil and protein content of soybean (Glycine max L. Merr). Pakistan Journal of Biological Sciences: PJBS. Feb, 12(4):378-382. DOI: 10.3923/pjbs.2009.378.382. PMID: 19579973.

Bosaz, L.B., Gerde, J.A., Borras, L., Cipriotti, P.A., Ascher, L., Campos, M., Gallo, S., Rotundo, J.L. 2019. Management and environmental factors explain soybean seed protein variability in central Argentina. Field Crop Res. 240, 34–43.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A. 1984. Classification and Regression Trees. CRC press. CAC. Camara Arbitral

Burton, J.W. 1987. Quantitative genetics: results relevant to soybean breeding. In: Wilcox, J.R. (Ed.), Soybeans: Improvement, Production, and Uses, second ed. Agron. Monogr, vol. 16. ASA-CSSA-SSSA, Madison, WI, pp. 211–247.

Cafaro La Menza, N., Monzon, J.P., Lindquist, J.L., Arkebauer, T.J., Knops, J.M., Unkovich, M., Specht, J.E., Grassini, P. 2020. Insufficient nitrogen supply from symbiotic fixation reduces seasonal crop growth and nitrogen mobilization to seed in highly productive soybean crops. Plant Cell Environ. 43, 1958–1972.

Carrera, C., Martinez, M.J., Dardanelli, J., Balzarini, M., 2009. Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Sci. 49, 990–998.

Cerrudo, A., Miller-Garvin J. and Naeve, S.L. 2023. Western Hemisphere quality and production capacity of soybean protein. Front. Sustain. Food Syst. 7:1223921. doi: 10.3389/fsufs.2023.1223921

De Vries, F.P., Brunsting, A.H.M. and Van Laar, H.H. 1974. Products, requirements and efficiency of biosynthesis a quantitative approach. Journal of theoretical Biology, 45(2), pp.339-377.

Dornbos Jr., D.L., Mullen, R.E. 1992. Soybean seed oil and oil contents and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 69, 228–231.

Dornbos, D.L., McDonald, M.B. 1986. Mass and composition of developing soybean seeds at five reproductive growth stages. Crop Sci. 26, 624–630.

Embrapa. 2012. Regionalização dos testes de Valor de Cultivo e Uso e da indicação de cultivares de soja - Terceira aproximação. Recuperado de https://www.infoteca.cnptia.embrapa.br/bitstream/doc/917252/1/Doc330OL1.pdf

Ferreira, A. S.; Balbinot, A. A.; Werner, F.; Zucareli, C.; Franchini, J. C.; Debiasi, H. 2016. Plant density and mineral nitrogen fertilization influencing yield, yield components and concentration of oil and protein in soybean grains. Bragantia [online]. V. 75, n. 3 [Accessed 5 October 2021], pp. 362-370. Available from: <https://doi.org/10.1590/1678-4499.479>. Epub 23 June 2016. ISSN 1678-4499.

Foroud, N., Mündel, H.H., Saindon, G., Entz, T. 1993. Effect of level and timing of moisture stress on soybean yield, protein, and oil responses. Field Crop Res. 31, 195–209.

G. Kaschuk, P.A. Leffelaar, K.E. Giller, O. Alberton, M. Hungria, T.W. Kuyper. 2010. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol. Biochem., pp. 125-127

G. Kaschuk, T.W. Kuyper, P.A. Leffelaar, M. Hungria, K.E. Giller. 2009. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem., pp. 1233-1244.

Gibson, L.R., Mullen, R.E., 1996. Soybean seed composition under high day and night growth temperatures. J. Am. Oil Chem. Soc. 73, 733–737.

Glaciela Kaschuk, Xinyou Yin, Mariangela Hungria, Peter A. Leffelaar, Ken E. Giller, Thomas W. Kuyper, 2012. Photosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strains. https://doi.org/10.1016/j.envexpbot.2011.10.002.

Goldsmith, P. D., Gunjal, K., and Ndarishikanye, B. (2004). Rural–urban migration and agricultural productivity: the case of Senegal. Agric. Econ. 31, 33–45. doi: 10.1111/j.1574-0862.2004.tb00220.x

Hider, Nаbil & Zhmurko, Vasily. 2020. Influence of different photoperiodic conditions on the protein and oil content in soybean seeds (Glycine Max (L.) Merr.). ScienceRise: Biological Science. 10-15. 10.15587/2519-8025.2020.201416.

Javier de Luca, M., Nogueira, M.A. and Hungria, M. 2014. Feasibility of Lowering Soybean Planting Density without Compromising Nitrogen Fixation and Yield. Agronomy Journal, 106: 2118-2124. https://doi.org/10.2134/agronj14.0234

Javier de Luca, Marcos & Hungria, Mariangela. 2014. Plant densities and modulation of symbiotic nitrogen fixation in Soybean. Scientia Agricola. 71. 181-187. 10.1590/S0103-90162014000300002.

Luo X, Yin M, He Y. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. Int J Mol Sci. 2021 Dec 31;23(1):466. doi: 10.3390/ijms23010466. PMID: 35008892; PMCID: PMC8745532.

Mertz-Henning, L.M., Ferreira, L.C., Henning, F.A.J., Mandarino, M.G., Santos, E.D., Oliveira, M.C.N.D., Nepomuceno, A.L., Farias, J.R.B., Neumaier, N. 2018. Effect of water deficit-induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agron. J. 8, 2–11.

Miller-Garvin, J., Naeve, S.L. 2019. United States Soybean Quality 2018 Annual Report. Available from https://ussec.org/resources/ussec-annual-report/.

Okumura, R.S., D.D.C. Mariano, P.V.C. Zaccheo, A.N. de Albuquerque and C.G. Giebelmeier et al. 2013. Efficiency of utilization of nitrogen coated with urease inhibitor in maize. Pak. J. Biol. Sci., 16: 871-876.

Ortez, O.A., Tamagno, S., Salvagiotti, F., Prasad, P.V.V., Ciampitti, I.A. 2019. Soybean nitrogen sources and demand during the seed-filling period. Agron. J. 111, 1779–1787.

Piper, Ernest & Boote, Kenneth. 1999. Temperature and cultivar effects on soybean seed oil and protein concentrations. Journal of the American Oil Chemists’ Society. 76. 1233-1241. 10.1007/s11746-999-0099-y.

Poeta, F.B., Rotundo, J.L., Borras, L., Westgate, M.E. 2014. Seed water concentration and accumulation of protein and oil in soybean seeds. Crop Sci. 54, 2752–2759.

Rotundo, J.L., Miller-Garvin, J.E., Naeve, S.L. 2016. Regional and temporal variation in soybean seed protein and oil across the United States. Crop Sci. 56, 797–808.

Rotundo, J.L., Westgate, M.E. 2009. Meta-analysis of environmental effects on soybean seed composition. Field Crop Res. 110, 147–156.

Rotundo, J.L., Westgate, M.E. 2010. Rate and duration of seed component accumulation in water-stressed soybean. Crop Sci. 50, 676–684.

Rubel, A., Rinne, R.W., Canvin, D.T. 1972. Protein, oil, and fatty acid in developing soybean seeds. Crop Sci. 12, 739–741.

Kelly, S. J.; Cano, M. G.; Fanello, D. D.; Tambussi, E. A.; Guiamet, J. J. 2021. Extended photoperiods after flowering increase the rate of dry matter production and nitrogen assimilation in mid maturing soybean cultivars, Field Crops Research, Volume 265, 108104, ISSN 0378-4290, https://doi.org/10.1016/j.fcr.2021.108104. (https://www.sciencedirect.com/science/article/pii/S0378429021000502)

Severini A, Otegui M., Miralles D.J., Cicchino M., Zuil S. 2017. CronoSoja: Ajustando la fenología de soja a través de ambientes. III Workshop Internacional de Ecofisiología de Cultivos 28-29 Septiembre 2017. Mar del Plata.

Specht, J.E., Chase, K., Macrander, M., Graef, G.L., Chung, J., Markwell, J.P., Germann, M., Orf, J.H., Lark, K.G. 2001. Soybean response to water. A QTL analysis of drought tolerance. Crop Sci. 41, 493–509.

Thornthwaite C.W., Mather R.J. 1955. The water balance. Publications in climatology, laboratory of climatology. Centerton, N.J. 104 pp.

Wahid, A., S. Gelani, M. Ashraf, Foolad, M. 2007. “Heat tolerance in plants: An overview”. Env Exp Bot. 61:199-223.

Wijewardana, C., Reddy, K.R., Bellaloui, N. 2019. Soybean seed physiology, quality, chemical composition under soil moisture stress. Food Chem. 278, 95–100.

Wilson, R.F. 2004. Seed composition. In: Boerma, H., Specht, J.E. (Eds.), Soybeans: Improvement, Production, and Uses. CSSA, Madison, WI, pp. 621–668.

Wolf, R.B., Cavins, J.F., Kleiman, R., Black, L.T. 1982. Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids, and sugars. J. Am. Oil Chem. Soc. 59, 230–232.

Yamagata, M., Kouchi, H., Yoneyama, T. 1987. Partitioning and utilization of photosynthate produced at different growth-stages after anthesis in soybean (Glycine-Max-L Merr): analysis by long-term C-13-labeling experiments. J. Exp. Bot. 38, 1247–1259.

Yazdi-Samadi, B., Rinne, R.W., Seif, R.D. 1977. Components of developing soybean seeds: oil, protein, sugars, starch, organic acids, and amino acids. Agron. J. 69, 481–486.

Downloads

Published

2024-05-28

How to Cite

IMPACT OF ENVIRONMENTAL VARIABLES ON PROTEIN IN SOYBEANS. (2024). Nexo Agropecuario, Edición Especial, 26-34. https://revistas.unc.edu.ar/index.php/nexoagro/article/view/45172