Algoritmo evolutivo multiobjetivo basado en descomposición para la optimización del procesamiento por lotes de pedidos
Keywords:
metaheuristics, evolutionary algorithm, jobprpAbstract
The demand for sustainable logistics practices, coupled with the rise of e-commerce, has led to greater requirements for efficiency and quality in order processing. Within this framework, and with the aim of studying the most suitable methods to address the problem of order grouping and preparation, a variant of the JOBPRP is presented with two objectives: operational costs and balanced workload distribution. In this context, evolutionary algorithms are strong alternatives for multi-objective search, yet they may face challenges related to convergence or diversity when dealing with irregular Pareto fronts. Therefore, the performance of the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D) was studied. A comparative analysis of its performance was conducted using different scalarization methods across an extensive set of experimental tests applied to instances of various sizes of the problem under consideration. Performance indicators such as hypervolume, the average distance to the ideal solution, and the dispersion of non-dominated solutions were used. The results indicate that the MOEA/D based on the AASF method demonstrates strong performance in terms of average hypervolumes and solution dispersion across the fronts.
Downloads
References
Ardjmand, E., Shakeri, H., Singh, M., & Sanei Bajgiran, O. (2018). Minimizing order picking makespan with multiple pickers in a wave picking warehouse. International Journal of Production Economics, 206, 169-183.
https://doi.org/10.1016/j.ijpe.2018.10.001
Ardjmand, E., Youssef, E. M., Moyer, A., Young, W. A., Weckman, G. R., & Shakeri, H. (2020). A multi-objective model for minimising makespan and total travel time in put wall-based picking systems. International Journal of Logistics Systems and Management, 36(1), 138-176. https://doi.org/10.1504/IJLSM.2020.107230
Battini, D., Glock, C. H., Grosse, E. H., Persona, A., & Sgarbossa, F. (2016). Human energy expenditure in order picking storage assignment: A bi-objective method. Computers & Industrial Engineering, 94, 147-157.
https://doi.org/10.1016/j.cie.2016.01.020
Cergibozan, Ç., & Tasan, A. S. (2019). Order batching operations: An overview of classification, solution techniques, and future research. Journal of Intelligent Manufacturing, 30(1), 335-349. https://doi.org/10.1007/s10845-016-1248-4
Chen, M.-C., & Wu, H.-P. (2005). An association-based clustering approach to order batching considering customer demand patterns. Omega, 33(4), 333-343.
https://doi.org/10.1016/j.omega.2004.05.003
Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28-36. IEEE Computational Intelligence Magazine. https://doi.org/10.1109/MCI.2006.1597059
De Koster, M. B. M., Van der Poort, E. S., & Wolters, M. (1999). Efficient orderbatching methods in warehouses. International Journal of Production Research, 37(7), 1479-1504.
https://doi.org/10.1080/002075499191094
de Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481-501. https://doi.org/10.1016/j.ejor.2006.07.009
Diefenbach, H., Emde, S., Glock, C. H., & Grosse, E. H. (2022). New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot. OR Spectrum, 44(2), 535-573. https://doi.org/10.1007/s00291-021-00663-8
Fang, K.-T., & Wang, Y. (1993). Number-theoretic methods in statistics (Vol. 51). CRC Press.
Grosse, E. H., & Glock, C. H. (2015). The effect of worker learning on manual order picking processes. International Journal of Production Economics, 170, 882-890.
https://doi.org/10.1016/j.ijpe.2014.12.018
Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: A content analysis of the literature. International Journal of Production Research, 55(5), 1260-1276.
https://doi.org/10.1080/00207543.2016.1186296
Henn, S., Koch, S., & Wäscher, G. (2012). Order Batching in Order Picking Warehouses: A Survey of Solution Approaches. En R. Manzini (Ed.), Warehousing in the Global Supply Chain: Advanced Models, Tools and Applications for Storage Systems (pp. 105-137). Springer. https://doi.org/10.1007/978-1-4471-2274-6_6
Henn, S., & Schmid, V. (2013). Metaheuristics for order batching and sequencing in manual order picking systems. Computers & Industrial Engineering, 66(2), 338-351.
https://doi.org/10.1016/j.cie.2013.07.003
Ho, Y.-C., & Tseng, Y.-Y. (2006). A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. International Journal of Production Research, 44(17), 3391-3417. https://doi.org/10.1080/00207540600558015
Hofmann, F. M., & Visagie, S. E. (2021). The Effect of Order Batching on a Cyclical Order Picking System. En M. Mes, E. Lalla-Ruiz, & S. Voß (Eds.), Computational Logistics (pp. 252-268). Springer International Publishing. https://doi.org/10.1007/978-3-030-87672-2_17
Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37(6), 4024-4032. https://doi.org/10.1016/j.eswa.2009.09.005
Kulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible Services and Manufacturing Journal, 24(1), 52-80. https://doi.org/10.1007/s10696-011-9101-8
Lam, C. H. Y., Choy, K. L., Ho, G. T. S., & Lee, C. K. M. (2014). An order-picking operations system for managing the batching activities in a warehouse. International Journal of Systems Science, 45(6), 1283-1295. https://doi.org/10.1080/00207721.2012.761461
Miettinen, K. (1998). Nonlinear Multiobjective Optimization (Vol. 12). Springer US. https://doi.org/10.1007/978-1-4615-5563-6
Miguel, F., Frutos, M., Tohmé, F., & Rossit, D. (2019). A memetic algorithm for the integral OBP/OPP problem in a logistics distribution center. Uncertain Supply Chain Management, 7(2), 203-214.
Miguel, F. M., Frutos, M., Méndez, M., & Tohmé, F. (2021). Solving Order Batching/Picking Problems with an Evolutionary Algorithm. En D. A. Rossit, F. Tohmé, & G. Mejía Delgadillo (Eds.), Production Research (pp. 177-186). Springer International Publishing. https://doi.org/10.1007/978-3-030-76307-7_14
Miguel, F. M., Frutos, M., Méndez, M., Tohmé, F., & González, B. (2024). Comparison of MOEAs in an Optimization-Decision Methodology for a Joint Order Batching and Picking System. Mathematics, 12(8), Article 8. https://doi.org/10.3390/math12081246
Miguel, F. M., Frutos, M., Méndez, M., Tohmé, F., Miguel, F. M., Frutos, M., Méndez, M., & Tohmé, F. (2022). Order batching and order picking with 3D positioning of the articles: Solution through a hybrid evolutionary algorithm. Mathematical Biosciences and Engineering, 19(6), Article mbe-19-06-259.
https://doi.org/10.3934/mbe.2022259
Olmos, J., Florencia, R., García, V., González, M. V., Rivera, G., & Sánchez-Solís, P. (2022). Metaheuristics for Order Picking Optimisation: A Comparison Among Three Swarm-Intelligence Algorithms. En A. Ochoa-Zezzatti, D. Oliva, & A. E. Hassanien (Eds.), Technological and Industrial Applications Associated With Industry 4.0 (pp. 177-194). Springer International Publishing. https://doi.org/10.1007/978-3-030-68663-5_13
Pan, J. C.-H., Shih, P.-H., & Wu, M.-H. (2012). Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system. Computers & Industrial Engineering, 62(2), 527-535.
https://doi.org/10.1016/j.cie.2011.11.001
Pardo, E. G., Gil-Borrás, S., Alonso-Ayuso, A., & Duarte, A. (2024). Order batching problems: Taxonomy and literature review. European Journal of Operational Research, 313(1), 1-24.
https://doi.org/10.1016/j.ejor.2023.02.019
Pescador-Rojas, M., & Coello, C. A. C. (2018). Collaborative and Adaptive Strategies of Different Scalarizing Functions in MOEA/D. 2018 IEEE Congress on Evolutionary Computation (CEC), 1-8. https://doi.org/10.1109/CEC.2018.8477815
Sancaklı, E., Dumlupınar, İ., Akçın, A. O., Çınar, E., Geylani, İ., & Düzgit, Z. (2022). Design of a Routing Algorithm for Efficient Order Picking in a Non-traditional Rectangular Warehouse Layout. En N. M. Durakbasa & M. G. Gençyılmaz (Eds.), Digitizing Production Systems (pp. 401-412). Springer International Publishing. https://doi.org/10.1007/978-3-030-90421-0_33
Scholz, A., Schubert, D., & Wäscher, G. (2017). Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems. European Journal of Operational Research, 263(2), 461-478. https://doi.org/10.1016/j.ejor.2017.04.038
Ten Hompel, M., & Schmidt, T. (2007). Warehouse Management. Springer. https://doi.org/10.1007/978-3-540-35220-4
Tsai, C.-Y., Liou, J. J. H., & Huang, T.-M. (2008). Using a multiple-GA method to solve the batch picking problem: Considering travel distance and order due time. International Journal of Production Research, 46(22), 6533-6555.
https://doi.org/10.1080/00207540701441947
van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197, 243-261. https://doi.org/10.1016/j.ijpe.2017.11.021
Vanheusden, S., Gils, T. van, Ramaekers, K., Cornelissens, T., & Caris, A. (2023). Practical factors in order picking planning: State-of-the-art classification and review. International Journal of Production Research.
https://doi.org/10.1080/00207543.2022.2053223
Wierzbicki, A. P. (1980). The Use of Reference Objectives in Multiobjective Optimization. En G. Fandel & T. Gal (Eds.), Multiple Criteria Decision Making Theory and Application (pp. 468-486). Springer. https://doi.org/10.1007/978-3-642-48782-8_32
Zhang, J., Wang, X., Chan, F. T. S., & Ruan, J. (2017). On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45, 271-284. https://doi.org/10.1016/j.apm.2016.12.012
Zhang, Q., & Li, H. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712-731. IEEE Transactions on Evolutionary Computation.
https://doi.org/10.1109/TEVC.2007.892759
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117-132. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/TEVC.2003.810758
Žulj, I., Glock, C. H., Grosse, E. H., & Schneider, M. (2018). Picker routing and storage-assignment strategies for precedence-constrained order picking. Computers & Industrial Engineering, 123, 338-347. https://doi.org/10.1016/j.cie.2018.06.015
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.