Algoritmo evolutivo multiobjetivo basado en descomposición para la optimización del procesamiento por lotes de pedidos

Authors

  • Fabio M. Miguel Sede Alto Valle y Valle Medio, Universidad Nacional de Río Negro, CONICET, Argentina.
  • Mariano Frutos Departamento de Ingeniería, Universidad Nacional del Sur (UNS), Argentina. Instituto de Investigaciones Económicas y Sociales del Sur (IIESS UNS-CONICET), Argentina. Instituto de Ingeniería (II UNS-CIC), Argentina.
  • Máximo Méndez Instituto Universitario SIANI, Universidad de Las Palmas de Gran Canaria (ULPGC), España.
  • Begoña González Instituto Universitario SIANI, Universidad de Las Palmas de Gran Canaria (ULPGC), España.

Keywords:

metaheuristics, evolutionary algorithm, jobprp

Abstract

The demand for sustainable logistics practices, coupled with the rise of e-commerce, has led to greater requirements for efficiency and quality in order processing. Within this framework, and with the aim of studying the most suitable methods to address the problem of order grouping and preparation, a variant of the JOBPRP is presented with two objectives: operational costs and balanced workload distribution. In this context, evolutionary algorithms are strong alternatives for multi-objective search, yet they may face challenges related to convergence or diversity when dealing with irregular Pareto fronts. Therefore, the performance of the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D) was studied. A comparative analysis of its performance was conducted using different scalarization methods across an extensive set of experimental tests applied to instances of various sizes of the problem under consideration. Performance indicators such as hypervolume, the average distance to the ideal solution, and the dispersion of non-dominated solutions were used. The results indicate that the MOEA/D based on the AASF method demonstrates strong performance in terms of average hypervolumes and solution dispersion across the fronts.

Downloads

Download data is not yet available.

References

Ardjmand, E., Shakeri, H., Singh, M., & Sanei Bajgiran, O. (2018). Minimizing order picking makespan with multiple pickers in a wave picking warehouse. International Journal of Production Economics, 206, 169-183.

https://doi.org/10.1016/j.ijpe.2018.10.001

Ardjmand, E., Youssef, E. M., Moyer, A., Young, W. A., Weckman, G. R., & Shakeri, H. (2020). A multi-objective model for minimising makespan and total travel time in put wall-based picking systems. International Journal of Logistics Systems and Management, 36(1), 138-176. https://doi.org/10.1504/IJLSM.2020.107230

Battini, D., Glock, C. H., Grosse, E. H., Persona, A., & Sgarbossa, F. (2016). Human energy expenditure in order picking storage assignment: A bi-objective method. Computers & Industrial Engineering, 94, 147-157.

https://doi.org/10.1016/j.cie.2016.01.020

Cergibozan, Ç., & Tasan, A. S. (2019). Order batching operations: An overview of classification, solution techniques, and future research. Journal of Intelligent Manufacturing, 30(1), 335-349. https://doi.org/10.1007/s10845-016-1248-4

Chen, M.-C., & Wu, H.-P. (2005). An association-based clustering approach to order batching considering customer demand patterns. Omega, 33(4), 333-343.

https://doi.org/10.1016/j.omega.2004.05.003

Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28-36. IEEE Computational Intelligence Magazine. https://doi.org/10.1109/MCI.2006.1597059

De Koster, M. B. M., Van der Poort, E. S., & Wolters, M. (1999). Efficient orderbatching methods in warehouses. International Journal of Production Research, 37(7), 1479-1504.

https://doi.org/10.1080/002075499191094

de Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481-501. https://doi.org/10.1016/j.ejor.2006.07.009

Diefenbach, H., Emde, S., Glock, C. H., & Grosse, E. H. (2022). New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot. OR Spectrum, 44(2), 535-573. https://doi.org/10.1007/s00291-021-00663-8

Fang, K.-T., & Wang, Y. (1993). Number-theoretic methods in statistics (Vol. 51). CRC Press.

Grosse, E. H., & Glock, C. H. (2015). The effect of worker learning on manual order picking processes. International Journal of Production Economics, 170, 882-890.

https://doi.org/10.1016/j.ijpe.2014.12.018

Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: A content analysis of the literature. International Journal of Production Research, 55(5), 1260-1276.

https://doi.org/10.1080/00207543.2016.1186296

Henn, S., Koch, S., & Wäscher, G. (2012). Order Batching in Order Picking Warehouses: A Survey of Solution Approaches. En R. Manzini (Ed.), Warehousing in the Global Supply Chain: Advanced Models, Tools and Applications for Storage Systems (pp. 105-137). Springer. https://doi.org/10.1007/978-1-4471-2274-6_6

Henn, S., & Schmid, V. (2013). Metaheuristics for order batching and sequencing in manual order picking systems. Computers & Industrial Engineering, 66(2), 338-351.

https://doi.org/10.1016/j.cie.2013.07.003

Ho, Y.-C., & Tseng, Y.-Y. (2006). A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. International Journal of Production Research, 44(17), 3391-3417. https://doi.org/10.1080/00207540600558015

Hofmann, F. M., & Visagie, S. E. (2021). The Effect of Order Batching on a Cyclical Order Picking System. En M. Mes, E. Lalla-Ruiz, & S. Voß (Eds.), Computational Logistics (pp. 252-268). Springer International Publishing. https://doi.org/10.1007/978-3-030-87672-2_17

Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37(6), 4024-4032. https://doi.org/10.1016/j.eswa.2009.09.005

Kulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible Services and Manufacturing Journal, 24(1), 52-80. https://doi.org/10.1007/s10696-011-9101-8

Lam, C. H. Y., Choy, K. L., Ho, G. T. S., & Lee, C. K. M. (2014). An order-picking operations system for managing the batching activities in a warehouse. International Journal of Systems Science, 45(6), 1283-1295. https://doi.org/10.1080/00207721.2012.761461

Miettinen, K. (1998). Nonlinear Multiobjective Optimization (Vol. 12). Springer US. https://doi.org/10.1007/978-1-4615-5563-6

Miguel, F., Frutos, M., Tohmé, F., & Rossit, D. (2019). A memetic algorithm for the integral OBP/OPP problem in a logistics distribution center. Uncertain Supply Chain Management, 7(2), 203-214.

Miguel, F. M., Frutos, M., Méndez, M., & Tohmé, F. (2021). Solving Order Batching/Picking Problems with an Evolutionary Algorithm. En D. A. Rossit, F. Tohmé, & G. Mejía Delgadillo (Eds.), Production Research (pp. 177-186). Springer International Publishing. https://doi.org/10.1007/978-3-030-76307-7_14

Miguel, F. M., Frutos, M., Méndez, M., Tohmé, F., & González, B. (2024). Comparison of MOEAs in an Optimization-Decision Methodology for a Joint Order Batching and Picking System. Mathematics, 12(8), Article 8. https://doi.org/10.3390/math12081246

Miguel, F. M., Frutos, M., Méndez, M., Tohmé, F., Miguel, F. M., Frutos, M., Méndez, M., & Tohmé, F. (2022). Order batching and order picking with 3D positioning of the articles: Solution through a hybrid evolutionary algorithm. Mathematical Biosciences and Engineering, 19(6), Article mbe-19-06-259.

https://doi.org/10.3934/mbe.2022259

Olmos, J., Florencia, R., García, V., González, M. V., Rivera, G., & Sánchez-Solís, P. (2022). Metaheuristics for Order Picking Optimisation: A Comparison Among Three Swarm-Intelligence Algorithms. En A. Ochoa-Zezzatti, D. Oliva, & A. E. Hassanien (Eds.), Technological and Industrial Applications Associated With Industry 4.0 (pp. 177-194). Springer International Publishing. https://doi.org/10.1007/978-3-030-68663-5_13

Pan, J. C.-H., Shih, P.-H., & Wu, M.-H. (2012). Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system. Computers & Industrial Engineering, 62(2), 527-535.

https://doi.org/10.1016/j.cie.2011.11.001

Pardo, E. G., Gil-Borrás, S., Alonso-Ayuso, A., & Duarte, A. (2024). Order batching problems: Taxonomy and literature review. European Journal of Operational Research, 313(1), 1-24.

https://doi.org/10.1016/j.ejor.2023.02.019

Pescador-Rojas, M., & Coello, C. A. C. (2018). Collaborative and Adaptive Strategies of Different Scalarizing Functions in MOEA/D. 2018 IEEE Congress on Evolutionary Computation (CEC), 1-8. https://doi.org/10.1109/CEC.2018.8477815

Sancaklı, E., Dumlupınar, İ., Akçın, A. O., Çınar, E., Geylani, İ., & Düzgit, Z. (2022). Design of a Routing Algorithm for Efficient Order Picking in a Non-traditional Rectangular Warehouse Layout. En N. M. Durakbasa & M. G. Gençyılmaz (Eds.), Digitizing Production Systems (pp. 401-412). Springer International Publishing. https://doi.org/10.1007/978-3-030-90421-0_33

Scholz, A., Schubert, D., & Wäscher, G. (2017). Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems. European Journal of Operational Research, 263(2), 461-478. https://doi.org/10.1016/j.ejor.2017.04.038

Ten Hompel, M., & Schmidt, T. (2007). Warehouse Management. Springer. https://doi.org/10.1007/978-3-540-35220-4

Tsai, C.-Y., Liou, J. J. H., & Huang, T.-M. (2008). Using a multiple-GA method to solve the batch picking problem: Considering travel distance and order due time. International Journal of Production Research, 46(22), 6533-6555.

https://doi.org/10.1080/00207540701441947

van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197, 243-261. https://doi.org/10.1016/j.ijpe.2017.11.021

Vanheusden, S., Gils, T. van, Ramaekers, K., Cornelissens, T., & Caris, A. (2023). Practical factors in order picking planning: State-of-the-art classification and review. International Journal of Production Research.

https://doi.org/10.1080/00207543.2022.2053223

Wierzbicki, A. P. (1980). The Use of Reference Objectives in Multiobjective Optimization. En G. Fandel & T. Gal (Eds.), Multiple Criteria Decision Making Theory and Application (pp. 468-486). Springer. https://doi.org/10.1007/978-3-642-48782-8_32

Zhang, J., Wang, X., Chan, F. T. S., & Ruan, J. (2017). On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45, 271-284. https://doi.org/10.1016/j.apm.2016.12.012

Zhang, Q., & Li, H. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712-731. IEEE Transactions on Evolutionary Computation.

https://doi.org/10.1109/TEVC.2007.892759

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117-132. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/TEVC.2003.810758

Žulj, I., Glock, C. H., Grosse, E. H., & Schneider, M. (2018). Picker routing and storage-assignment strategies for precedence-constrained order picking. Computers & Industrial Engineering, 123, 338-347. https://doi.org/10.1016/j.cie.2018.06.015

Downloads

Published

2024-11-30

Issue

Section

Artículos Científicos

How to Cite

Algoritmo evolutivo multiobjetivo basado en descomposición para la optimización del procesamiento por lotes de pedidos. (2024). Revista De La Escuela De Perfeccionamiento En Investigación Operativa, 32(56). https://revistas.unc.edu.ar/index.php/epio/article/view/47352