Detección de empresas con dificultades financieras y validación de sus ratios contables a través de métodos de clasificación
Keywords:
estadística multivariada, contabilidad, análisis de riesgoAbstract
Financial statements provide essential information for decision making and performance evaluation of companies. This information is even more relevant for identifying financial vulnerability situations. With this purpose, this article explores the behavior of certain financial ratios, aiming to determine whether a company is facing a financial challenge when their financial position is unknown a priori. Latin American markets —Argentina, Brazil, Chile, and Peru- are compared in terms of their companies' financial ratios from the 2000 decade, available at the respective stock markets.
Cluster analysis provided the first approach in grouping companies and characterize them according to their financial position.
This article uses non-parametric methods for mean comparison to identify accounting ratios that were significant for clustering the companies.
Some findings strongly suggest that companies with financial difficulties are similar. These present lower economic profitability and cash flow indexes when compared to companies that are not facing these challenges. Moreover, they show higher debt levels and lower total asset turnover.
Downloads
References
ALTMAN, E. (1968). FINANCIAL RATIOS, DISCRIMINATE ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY. Journal of Finance, 23(3), págs. 589-609.
ALTMAN, E., HALDEMAN, R. y NARAYANAN, P. (1977). ZETA ANALYSIS: A NEW MODEL TO IDENTIFY BANKRUPTCY RISK OF CORPORATIONS. Journal of Banking and Finance, 1(1), págs. 29-54.
ARGENTI, J. (1976): CORPORATE PLANNING AND CORPORATE COLLAPSE. Lon Range Planning. 9(6), págs. 12-17.
BEAVER, W. (1966). FINANCIAL RATIOS AS PREDICTORS OF FAILURES. EMPIRICAL RESEARCH IN ACCOUNTING SELECTED STUDIES 1966. Journal of Accounting Research, Supplement, 5, págs. 71-111.
CARO, N. (2014). MODELOS DE PREDICCIÓN DE CRISIS FINANCIERA EN EMPRESAS: UNA REVISIÓN DE LA LITERATURA. Revista Internacional Legis de Contabilidad y Auditoría, 58, págs. 135-183.
CARO, N., DÍAZ, M. Y PORPORATO, M. (2013). PREDICCIÓN DE QUIEBRAS EMPRESARIALES EN ECONOMÍAS EMERGENTES: USO DE UN MODELO LOGÍSTICO MIXTO. REVISTA DE MÉTODOS CUANTITATIVOS PARA ECONOMÍA Y EMPRESA, 16, págs. 200-215.
CASEY, C. Y BARTCZAK, N. (1985). USING OPERATING CASH FLOW DATA TO PREDICT FINANCIAL DISTRESS: SOME EXTENSIONS. Journal of Accounting Research, págs. 384-401.
FITZPATRICK, P. (1932). A COMPARISION OF RATIOS OF SUCCESSFUL INDUSTRIAL ENTERPRISES WITH THOSE OF FAILED FIRMS. En Certifified Public Accountant, octubre, noviembre y diciembre, págs. 598-731.
JONES, S. Y HENSHER, D. (2004). PREDICTING FIRM FINANCIAL DISTRESS: A MIXED LOGIT MODEL. The Accounting Review, 79(4), págs. 1011-1039.
KEASEY, K. Y WATSON, R. (1991). FINANCIAL DISTRESS PREDICTION MODELS: A REVIEW OF THEIR USEFULNESS 1. British Journal of Management, 2(2), págs. 89-102.
LAITINEN, E. (1991) FINANCIAL RATIOS AND DIFFERENT FAILURE PROCESSES. Journal of Business Finance and Accounting, 18(5), págs. 649-673
LAITINEN, E. (1993) FINANCIAL PREDICTORS FOR DIFFERENT PHASES OF THE FAILURE PROCESS, OMEGA, 21(2), págs. 215-228.
LEHMANN, E. (1975). NONPARAMETRICS STATISTICAL METHODS BASED ON RANKS. Estados Unidos: Mc Graw Hill.
LENNOX, C. (1999). IDENTIFYING FAILING COMPANIES: A RE-EVALUATION OF THE LOGIT, PROBIT AND DA APPROACHES. Journal of Economics and Business, 51(4), págs. 347-364.
MANZANEQUE LIZANO, M., BANEGAS OCHOVO, R. Y GARCÍA PÉREZ DE LEMA, D. (2010). DIFERENTES PROCESOS DE FRACASO EMPRESARIAL. UN ANÁLISIS DINÁMICO A TRAVÉS DE LA APLICACIÓN DE TÉCNICAS ESTADÍSTICAS CLÚSTER. Revista Europea de Dirección y Económica de la Empresa, 19(3), págs. 67-88.
MANZANO, J. A. y JIMÉNEZ, E. U. (2017). ANÁLISIS MULTIVARIANTE APLICADO CON R. España: Paraninfo SA.
OHLSON, J. (1980). FINANCIAL RATIOS AND THE PROBABILISTIC PREDICTION OF BANKRUPTCY. Journal of Accounting Research, 18(1), págs. 109-131.
OOGHE, H Y DE PRIJCKER, S (2008) FAILURE PROCESSES AND CAUSES OF COMPANY BANKRUPTCY: A TYPOLOGY. Management Decision, 46(2), págs. 223-242.
PEÑA, D. (2002). ANÁLISIS DE DATOS MULTIVARIANTES. España: Mc Graw Hill.
PÉREZ, A. L. G., RODRÍGUEZ, A. C., MOLINA, M. A., & DEL PINO, I. B. (2004). LA INESTABILIDAD DE LOS MODELOS DE PREDICCIÓN DEL FRACASO EMPRESARIAL. En La gestión del riesgo financiero y la nueva ley concursal. Asociación Española de Contabilidad y Administración de Empresas, AECA. págs. 17.
PLATT, H. D. Y PLATT, M. B. (1990). DEVELOPMENT OF A CLASS OF STABLE PREDICTIVE VARIABLES: THE CASE OF BANKRUPTCY PREDICTION. Journal of Business Finance & Accounting, 17(1), págs. 31-51.
STEPHEN, J Y DUGAN, M (2001). THE LIMITATIONS OF BANKRUPTCY PREDICTION MODELS: SOME CAUTIONS FOR THE RESEARCHER. Review of Quantitative Finance and Accounting, 17(2), págs. 151-166.
TAFFLER, R. (1984). EMPIRICAL MODELS FOR THE MONITORING OF U.K. CORPORATIONS. Journal of Banking and Finance, págs. 199-227.
WARD, T.J. (1994). AN EMPIRICAL STUDY OF THE INCREMENTAL PREDICTIVE ABILITY OF BEAVER’S NAÏVE OPERATING FLOW MEASURE USING FOUR-STATE ORDINAL MODELS OF FINANCIAL DISTRESS. Journal of Business Finance & Accounting, 21(4), págs. 547- 560.
WINAKOR, A. Y SMITH, R. (1935). CHANGES IN FINANCIAL STRUCTURE OF UNSUCCESFUL INDUSTRIAL COMPANIES. Bureau of Business Research, Boletín 51, University of Illinois.
Downloads
Published
Issue
Section
License
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.