Análisis de los efectos de la existencia de autocorrelación sobre la gráfica c de control de atributos utilizando el modelo inar(1)
Keywords:
statistical process control, C-chart, time series, autocorrelation, INAR(1) modelAbstract
The central aim of this paper is to analyze the implications of the existence of autocorrelation in the c-chart for attributes control. In order to this, the strategy adopted is to generate data with similar distribution to Poisson distribution but introducing autocorrelation, which is performed using an integer autoregressive model of order one (INAR (1)). Then, the simulated data is used to analyze the performance of the above-mentioned graph, finding that its capacity to detect changes in the process mean is not affected.
Finally, we propose a runs rule to detect out of control proceses due to changes in the autocorrelation and we analyze its performance using simulation techniques.
Downloads
References
AL-OSH, M.; ALZAID, A. (1987): ?FIRST-ORDER INTEGER-VALUED AUTORREGRESIVE (INAR(1)) PROCESS?. Journal of Time Series Analysis – Vol. 8(3) – pgs. 261, 275.
ALWAN, L. C.; ROBERTS, H. V. (1988): ?TIME SERIES MODELING FOR STATISTICAL PROCESS CONTROL?. Journal of Business and Economic Statistics – Vol. 6(1) – pgs. 87, 95.
MCKENZIE, E. (1985): ?SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES?. Water Resources Bulletin – Vol. 21(4) – pgs. 645, 650.
MONTGOMERY, D. (2005): Introduction to Statistical Quality Control – Fifth Edition, John Wiley and Sons.
WEIB, C. H. (2007): ?CONTROLLING CORRELATED PROCESSES OF POISSON COUNTS?. Quality and Reliability Engineering International – Vol. 23(6) – pgs. 741, 754.
WESTERN ELECTRIC COMPANY (1956): Statistical Quality Control Handbook, Indianapolis.
Downloads
Published
Issue
Section
License
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.