Multicriteria analysis with unknown preferences: an application of the smaa-2 method

Authors

  • Luis Flavio Autran Monteiro Gomes Instituto Brasileiro de Mercado de Capitais
  • Annibal Parracho Sant’anna Escola de Engenharia. Universidade Federal Fluminense.
  • Luís Alberto Duncan Rangel Escola de Engenharia Industrial Metalúrgica de Volta Redonda. Universidade Federal Fluminense.

Keywords:

multicriteria decision aid, stochastic preferences, modelling of uncertainty - Monte Carlo simulation

Abstract

Applications of Multicriteria Decision Aiding are normally dependent on the preferences concerning alternatives for each criterion. They also depend on the measurements of the importance of criteria. Over the last decade, as a response to the fact that such preferences or measurements are often either not available or highly uncertain, Finnish researchers have developed a family of analytical methods called SMAA. Methods belonging to this family include SMAA-1, SMAA-D, SMAA-O, SMAA-2, SMAA-3, SMAA-A, SMAA-TRI, Ref-SMAA and SMAA-P. They consist, in essence, of formulating inverse problems in the weight space. These problems allow for the solving of multidimensional integrals and can be approached by the Monte Carlo simulation. In this article, the principal concepts of SMAA methods are presented. An example application to real data of one of the most important among these methods, the SMAA-2 method, is developed to demonstrate the main features of this approach. The article closes by addressing the appropriateness of using SMAA methods when the above-mentioned limitations prevail.

Downloads

Download data is not yet available.

References

BANA E COSTA, C. A. (1986): ?A MULTICRITERIA DECISION AID METHODOLOGY TO DEAL WITH CONFLICTING SITUATIONS ON THE WEIGHTS?. European Journal of Operational Research - Vol. 26 – pgs. 22-34.

BELTON, V.; STEWART, T. J. (2002): ?MULTIPLE CRITERIA DECISION ANALYSIS: AN INTEGRATED APPROACH?. Massachusetts: Kluwer Academic Publishers.

CHARNETSKI, J. R. (1973): ?THE MULTIPLE ATTRIBUTE PROBLEM WITH PARTIAL INFORMATION: THE EXPECTED VALUE AND COMPARATIVE HYPERVOLUME METHODS?. Ph.D. Thesis. Austin: The University of Texas at Austin.

CHARNETSKI, J. R.; SOLAND, R. M. (1976): ?STATISTICAL MEASURES FOR LINEAR FUNCTIONS ON POLYTOPES?. Operations Research – Vol. 24 – pgs. 201-204.

GOMES, L. F. A. M.; GOMES, C. F. S. (2012): ?TOMADA DE DECISÃO GERENCIAL ENFOQUE MULTICRITÉRIO?. 4ª ed. São Paulo: Ed. Atlas.

GOMES, L. F. A. M.; LIMA, M. M. P. P. (1991): ?TODIM: BASICS AND APPLICATION TO MULTICRITERIA RANKING OF PROJECTS WITH ENVIRONMENTAL IMPACTS?. Foundations of Computing and Decision Sciences – Vol. 16 (4) – pgs. 113-127.

GOMES, L. F. A. M.; RANGEL, L. A. D. (2009): ?AN APPLICATION OF THE TODIM METHOD TO THE MULTICRITERIA RENTAL EVALUATION OF RESIDENTIAL PROPERTIES?. European Journal of Operational Research – Vol. 193 - pgs. 204-211.

KAO, C.; LIU, S. (2009): ?STOCHASTIC DATA DEVELOPMENT ANALYSIS IN MEASURING THE EFFICIENCY OF TAIWAN COMMERCIAL BANKS?. European Journal of Operational Research. - Vol. 196 - pgs. 312–322.

KEENEY, R. L.; RAIFFA, H. (1976): ?DECISIONS WITH MULTIPLE OBJECTIVES: PREFERENCES AND VALUE TRADEOFFS?. Nova York: Wiley.

LAHDELMA, R.; HOKKANEN, J.; SALMINEN, P. (1998): ?SMAA – STOCHASTIC MULTIOBJECTIVE ACCEPTABILITY ANALYSIS?. European Journal of Operational Research – Vol. 106 – pgs. 137-143.

LAHDELMA, R.; MIETTINEN, K.; SALMINEN, P. (2002): ?STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS USING ACHIEVEMENT FUNCTIONS?. Technical Report 459, TUCS – Turku Center for Computer Science, Finland. Available at http://www.tucs.fi.

LAHDELMA, R.; MIETTINEN, K.; SALMINEN, P. (2003): ?ORDINAL CRITERIA IN STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS (SMAA)?. European Journal of Operational Research – Vol. 147(1) – pgs. 117-127.

LAHDELMA, R.; MIETTINEN, K.; SALMINEN, P. (2005): ?REFERENCE POINT APPROACH FOR MULTIPLE DECISION MAKERS?. European Journal of Operational Research - Vol. 164(3) - pgs. 785-791.

LAHDELMA, R.; SALMINEN, P. (2001): ?SMAA-2: STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS FOR GROUP DECISION MAKING?. Operations Research – Vol. 49 – pgs. 444-454.

LAHDELMA, R.;; SALMINEN, P. (2002): ?PSEUDO-CRITERIA VERSUS LINEAR UTILITY FUNCTION IN STOCHASTIC MULTI-CRITERIA ACCEPTABILITY ANALYSIS?. European Journal of Operational Research – Vol. 14 – pgs. 454–469.

LAHDELMA, R.; SALMINEN, P. (2009): ?PROSPECT THEORY AND STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS (SMAA)?. Omega – Vol. 37 – pgs. 961-971.

LAHDELMA, R.; SALMINEN, P.; HOKKANEN, J. (1999): ?COMBINING STOCHASTIC MULTIOBJECTIVE ACCEPTABILITY ANALYSIS AND DEA’’. In: D.K. DESPOTIS & C. ZOPOUNIDIS (EDS.) ?INTEGRATING TECHNOLOGY & HUMAN DECISIONS: GLOBAL BRIDGES INTO THE 21ST CENTURY’’. Athens: New Technologies Publications – pgs. 629-632.

LAHDELMA, R.; SALMINEN, P.; HOKKANEN, J. (2002): ?LOCATING A WASTE TREATMENT FACILITY BY USING STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS WITH ORDINAL CRITERIA?. European Journal of Operational Research – Vol. 142 – pgs.:345–356.

MATHWORKS. (2011): ?MATLAB. - THE LANGUAGE OF TECHNICAL COMPUTING?. Availabie at: <http://www.mathworks.com/products/matlab/> Acess. 28.04.2011.

RIBEIRO, R. O. A.; ANGULO MEZA, L.; SANT’ANNA, A. P.; SENNA, V. (2010): ?ANÁLISE DE EFICIÊNCIA DE LOJAS DE VAREJO DE VESTUÁRIO COM BASE NA MODELAGEM DEA?. Anais do XLII SBPO – pgs. 446-457.

RIETVELD, P. (1980): ?MULTIPLE OBJECTIVE DECISION METHODS AND REGIONAL PLANNING?. Amsterdam: North-Holland.

RIETVELD, P.; OUWERSLOOT, H. (1992): ?ORDINAL DATA IN MULTICRITERIA DECISION MAKING, A STOCHASTIC DOMINANCE APPROACH TO SITING NUCLEAR POWER PLANTS?. European Journal of Operational Research – Vol. 56 – pgs. 249-262.

ROY, B. (1996): ?MULTICRITERIA METHODOLOGY FOR MULTIPLE DECISION ANALYSIS?, Dordrecht: Kluwer.

SANT’ANNA, A.P. (2010): ?PROBABILISTIC COMPOSITION OF CRITERIA FOR SCHEDULE MONITORING?, Pesquisa Operacional – Vol. 30 – pgs. 751-767.

SALICONE, S. (2007): ?MEASUREMENT UNCERTAINTY AN APPROACH VIA THE MATHEMATICAL THEORY OF EVIDENCE?, New York: Springer.

TERVONEN, T. (2010): ?JSMAA: AN OPEN SOURCE SOFTWARE FOR SMAA COMPUTATIONS?. In: PROCEEDINGS OF THE 25TH MINI EURO CONFERENCE ON UNCERTAINTY AND ROBUSTNESS IN PLANNING AND DECISION MAKING (URPDM2010), HENGGELER ANTUNES, C.; RIOS INSUA.; DIAS, L. C. (eds.), Coimbra.

TERVONEN, T. (2012): ?JSMAA: OPEN SOURCE SOFTWARE FOR SMAA COMPUTATIONS?. International Journal of Systems Science (to appear).

TERVONEN, T; FIGUEIRA, J. R. (2008): ?A SURVEY ON STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS METHODS?, Journal of Multi-Criteria Decision Analysis – Vol. 15 – pgs. 1–14.

TERVONEN, T.; HILLEGE, H.; BUSKENS, E.; POSTMUS, D. (2010): ?A STATE-OF-THE-ART MULTI-CRITERIA MODEL FOR DRUG BENEFIT-RISK ANALYSIS?. SOM Research School Report No. 10001, University of Groningen.

TERVONEN, T.; LAHDELMA, R. (2007): ?IMPLEMENTING STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS?. European Journal of Operational Research – Vol. 178:2 – pgs. 500-513.

TERVONEN, T.; LAHDELMA, R.; ALMEIDA-DIAS, J.; FIGUEIRA, J. R.; SALMINEN, P. (2007): ?SMAA-TRI: A PARAMETER STABILITY ANALYSIS METHOD FOR ELECTRE-TRI?. In: KIKER; G. A.; LINKOV, I. (eds) ?ENVIRONMENTAL SECURITY IN HARBOURS AND COASTAL AREAS?. Berlin: Springer – pgs. 217-231.

TERVONEN, T.; LAHDELMA, R.; SALMINEN, P. (2004): ?A METHOD FOR ELICITATING AND COMBINING GROUP PREFERENCES FOR STOCHASTIC MULTICRITERIA ACCEPTABILITY ANALYSIS?, Technical Report 638, TUCS – Turku Center for Computer Science, Available at: http://www.tucs.fi.

TVERSKY, A.; KAHNEMAN, D. (1991): ?LOSS AVERSION IN RISKLESS CHOICE: A REFERENCE-DEPENDENT MODEL?. Quarterly Journal of Economics – Vol. 106(4) – pgs 1039–61.

Downloads

Published

2018-06-14

Issue

Section

Artículos Científicos

How to Cite

Multicriteria analysis with unknown preferences: an application of the smaa-2 method. (2018). Revista De La Escuela De Perfeccionamiento En Investigación Operativa, 21(34), 30-44. https://revistas.unc.edu.ar/index.php/epio/article/view/20302