Incorporación salival y plasmática de ácidos grasos luego de su ingesta inmediata en ratas

Autores

  • César Combina

Palavras-chave:

ácidos grasos, saliva, plasma

Resumo

Objetivo: analizar los niveles de ácidos grasos (AG) salivales y plasmáticos luego de su ingesta inmediata en ratas. Métodos: 6 ratas Wistar machos adultas recibieron dieta comercial hasta la 12ª semana de vida, en que se la reemplazó por dieta de laboratorio con aceite de maíz (6%) como fuente lipídica (principal AG linoleico 18:2 n-6). A 12 y 24 hs del cambio de dieta las ratas fueron anestesiadas y, antes de su sacrificio, se indujo la secreción salival mediante inyección intraperitoneal de isoproterenol/pilocarpina (5 mg/kg de c/u). La saliva (S) total fue recolectada durante 20 min mediante rollos de algodón intrabucales. Se obtuvo sangre (punción cardíaca) para separar plasma (P) (centrifugación). Se extrajeron lípidos de S y P para metilación de AG y análisis por cromatografía de gas–espectometría de masa. Se aplicaron coeficientes de correlación de Spearman y de regresión lineal (p≤0,05). Resultados: el AG 18:2 n-6 fue hallado en S y P a 12 y 24 hs, siendo mayor a 24 hs y en P. También se encontró un mayor número de AG en P que en S, a 12 y 24 hs. Los cocientes de concentraciones 24 hs/12hs en S fueron 16:0 (1,20); 16:1 (1,65); 18:0 (0,33); 18:1 n-9 (1,55); 18:2 n-6 (1,70); 20:4 n-6 (1,20) y 22:6 n-3 (1,19) y en P 16:0 (0,49); 16:1 (4,84); 18:0 (3,43); 18:1 n-9 (3,14); 18:2 n-6 (1,75); 20:4 n-6 (0,52) y 22:6 n-3 (0,73). Se observó una correlación positiva significativa entre AG 16:1 n-9 de S y P y una alta regresión entre AG 16:0; 16:1 n-9 y 18:0 salivales/plasmáticos. Conclusión: este estudio preliminar mostró que la ingesta del AG 18:2 n-6 se refleja rápidamente en S y P de ratas, con aumento en el tiempo, y que existe una correlación entre algunos AG de esos fluidos.

Referências

1. Van Meer G, Voelker DR, Feigenson G. Membrane lipids: where they are and how they behave. Nat Pub Group. 2008; 9:112-124.

2. Wiktorowska-Owczarek A, Berezińska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med. 2015; 24:931-41.

3. Chee B, Park B, Fitzsimmons T, Coates AM, Bartold PM. Omega-3 fatty acids as an adjunct for periodontal therapy-a review. Clin Oral Investig. 2016; 20:879-94.

4. Andreatta MM, Navarro A, Muñoz SE, Aballay L, Eynard AR. Dietary patterns and food groups are linked to the risk of urinary tract tumors in Argentina. Eur J Cancer Prev. 2010; 19:478-84.

5. Cao Y, Hou L, Wang W. Dietary total fat and fatty acids intake, serum fatty acids and risk of breast cancer: A meta-analysis of prospective cohort studies. Int J Cancer. 2016; 138:1894-904.

6. Pertiwi K, Kok DE, Wanders AJ, de Goede J, Zock PL, Geleijnse JM. Circulating n-3 fatty acids and linoleic acid

as indicators of dietary fatty acid intake in post-myocardial infarction patients. Nutr Metab Cardiovasc. 2019; 19:301-8.

7. Puy CL. The role of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal. 2006; 11: 449-455.

8. Brosky ME. The role of saliva in oral health: strategies for prevention and management of xerostomia. J Support Oncol. 2007; 5:215-225.

9. Lima DP, Diniz DG, Moimaz SA, Sumida DH, Okamoto AC. Saliva: reflection of the body. Int J Infect Dis. 2010; 14:184-8. 10. Rodríguez RPCB, de Andrade Vieira W, Siqueira WL, et al. Saliva as an alternative to blood in the determination of uremic state in adult patients with chronic kidney disease: a systematic review and meta-analysis. Clin Oral Investig. 2020; 24:2203-2217.

11. Colin D. Salivary flow patterns and the health of hard and soft oral tissues. J Am Dent Assoc. 2008; 139:18-24.

12. Alam SQ, Shi YY. The effect of essential fatty acid deficiency on the fatty acid composition of different salivary glands and saliva in rats. Arch Oral Biol. 1997; 42:727-734.

13. Defagó MD, Perovic NR, Valentich MA, Repossi G, Actis AB. Omega-3 and Omega-6 salivary fatty acids as markers of dietary fat quality: A cross-sectional study in Argentina. Acta Odontol Latinoam. 2018; 31:97-103.

14. Furtado JD, Beqari J, Campos H. Comparison of the utility of total plasma fatty acids versus those in cholesteryl ester, phospholipid, and triglyceride as biomarkers of fatty acid intake. Nutr. 2019; 3: 1-17.

15. Reeves PG. Nielsen FH. Fahey GC. Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123: 1939-1951.

16. Folch J, Lees M, Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957; 226:497-508.

17. Infostat v.p.1. Grupo InfoStat, Facultad de Ciencias Agropecuarias, U.N.C, Argentina 2005.

18. Alam SQ, Alam BS. Effect of dietary lipids on saliva composition. J Nutr. 1982; 112: 990-996. 19. Escandriolo Nackauzi J, Repossi G, Bernal C, Actis A, Gallará R. Dietary fatty acids and the time elapsed from their intake are related to their composition in rat submandibular gland and salivary flow rates. Clin Oral Investig. 2020; 10: 1-9.

20. Onozato M, Okanishi Y, Akutsu M, Okumura I, Nemoto A, Takano K, Sakamoto T, Ichiba H, Fukushima T. Alteration in plasma docosahexaenoic acid levels following oral administration of ethyl icosapentate to rats. Pract Lab Med. 2019; 18: 1-6.

21. Childs CE, Romeu-Nadal M, Burdge GC, Calder PC. The polyunsaturated fatty acid composition of hepatic and plasma lipids differ by both sex and dietary fat intake in rats. J Nutr. 2010; 140:245-50.

22. Ranković S, Popović T, Martačić JD, Petrović S, Tomić M, Ignjatović Đ, Tovilović-Kovačević G, Glibetić M. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes. Lipids Health Dis. 2017; 16:94.

23. Kassem AA, Abu Bakar MZ, Yong Meng G, Mustapha NM. Dietary (n-6: n-3) fatty acids alter plasma and tissue fatty acid composition in pregnant Sprague Dawley rats. Sci World J. 2012; 2012:851437.

24. Hodson L, Eyles HC, McLachlan KJ, Bell ML, Green TJ, Skeaff CM. Plasma and erythrocyte fatty acids reflect intakes of saturated and n-6 PUFA within a similar time frame. J Nutr. 2014; 144:33-41.

25. Defagó MD, Perovic NR, Valentich MA, Repossi G, Actis AB. Omega-3 and Omega-6 salivary fatty acids as markers of dietary fat quality: A cross-sectional study in Argentina. Acta Odontol Latinoam. 2018; 31:97-103.

26. Actis AB, Perovic NR, Defagó D, Beccacece C, Eynard AR. Fatty acid profile of human saliva: a possible indicator of dietary fat intake. Arch Oral Biol. 2005; 50: 1-6.

27. Marchioni DM, de Oliveira MF, Carioca AAF, Miranda AAM, Carvalho AM, Oki E, Norde MM, Rogero MM, Damasceno NRT, Fisberg RM. Plasma fatty acids: Biomarkers of dietary intake? Nutrition. 2019; 59:77-82.

28. Astorg P, Bertais S, Laporte F, Arnault N, Estaquio C y col. Plasma n-6 and n-3 polyunsaturated fatty acids as biomarkers of their dietary intakes: a cross-sectional study within a cohort of middle-aged French men and women. Eur J of Clin Nutr. 2008; 62:1155–1161.

29. Song X, Huang Y, Neuhouser ML, Tinker LF, Vitolins MZ, Prentice RL, Lampe JW. Dietary long-chain fatty acids and carbohydrate biomarker evaluation in a controlled feeding study in participants from the Women's Health Initiative cohort. Am J Clin Nutr. 2017; 105:1272-1282.

30. Furtado JD, Beqari J, Campos H. Comparison of the utility of total plasma fatty acids versus those in cholesteryl ester, phospholipid, and triglyceride as biomarkers of fatty acid intake. Nutr. 2019; 3: 1-17.

Publicado

2020-12-08