Influence of ascorbic acid in biomechanical tests of dental implants. Experimental study in rabbits
Keywords:
Ascorbic acid, dental implant, resonance frequency analysis, removal torqueAbstract
Objective: To compare, through biomechanical torque tests and resonance frequency analysis, Oxalife surface titanium implants, without and with vitamin C, placed in rabbit femurs. Methods: 17 Tree-Oss Rapid surface Oxalife implants of 7 mm in length and 3.3 mm in diameter with external hexagon connection were used, placed in the femur of 8 hybrid breed rabbits. Following the drilling sequence indicated by the manufacturer. Insertion torque and resonance frequency analysis were recorded to measure the initial stability coefficient. Euthanasia was performed at 60 days; then the implants were exposed to measure the final or biological stability coefficient through resonance frequency analysis (Osstell) and removal torque (Mark-10 Gauge). The data were subjected to parametric contrast Student test. Results in Ncm: Mean insertion torque value for the experimental group 16.5 ± 3.7 and for the control group 23.3 ± 4.2, with a significant difference (p<0.01). Mean removal torque for the experimental group 69.3 ± 17.4, and control group 87.2 ± 24.9 without significant differences (p=0.14). Average initial ISQ for the experimental group 40.2 ± 7.8 and for the control group 44.7 ± 6.9 (p=0.24). Final ISQ average for the experimental group 50.8 ± 1.1 and for the control 50.5 ± 2.0 (p=0.77) without differences in both measurements. Conclusion: The addition of vitamin C on the surface of the implant would not have a significant effect regarding the stability values during osseointegration
References
1. Blanco López P, Monsalve Guil L, Matos Garrido N, Moreno Muñoz J, Nuñez Márquez E, Velasco Ortega E. La oseointegración de implantes de titanio con diferentes superficies rugosas. Av Odontoestomatol 2018; 34 (3).
2. Velasco E, Pato J, Segura JJ, Medel R, Poyato M, Lorrio JM. (2009) La investigación experimental y la experiencia clínica de las superficies de los implantes dentales (I). Dentum 2009;9(1):36-42.
3. Mateos Moreno B, Herrero Climent M, Lázaro Calvo P, Mas Bermejo C, Sanz Alonso, M. Métodos clínicos para valoración de la estabilidad de la interfase implante-hueso. Monográfico de Osteointegración. Periodoncia y Oseointegración 2001; 11 (4) 5:323-336.
4. Martínez-Ramírez MJ, Palma S, Delgado-Martínez AD, Martínez-González MA, De la fuente C, Delgado-Rodríguez M. Vitamina C y riesgo de fractura osteoporótica en mujeres ancianas no fumadoras. Un estudio de casos y controles. Endocrinología y Nutrición 2007; 54(8):408-13.
5. Ahmadieh H, Arabi A. Vitamins and bone health: beyond calcium and vitamin D. Nutrition Reviews 2011;69(10):584–598.
6. Choi HK, Kim GJ, Yoo HS, Song DH, Chung KH, Lee KJ. Vitamin C Activates Osteoblastogenesis and Inhibits Osteoclastogenesis via Wnt/β-Catenin/ATF4 Signaling Pathways. Nutrients 2019; 11(3):506.
7. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P. Marked Decrease in Plasma Antioxidants in Aged Osteoporotic Women: Results ofa Cross-Sectional Study. J Clin Endocrinol Metab 2003;88(4):1523–7.
8. Jariwalla RJ, Harakeh S. Antiviral and immunomodulatory activities of ascorbic acid. In: Harris JR, ed. Subcellular Biochemistry. Vol. 25. Ascorbic Acid: Biochemistry and Biomedical Cell Biology. Plenum Press 1996; 25:213-31.
9. Sullivan DY, Sherwood RL, Collins TA, Krogh PH. The reverse-torque test: a clinical report. Int J Oral Maxillo-fac Implants 1996; 11(2):179-85.
10. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interfaceusing resonance frequency analysis. Clin Oral Implants Res 1996; 7:261-7.
11. Cattaneo G, Maureira A, Flores E, Oróstegui C, Oyarzún A. Oseointegración de implantes de titanio en fémur de conejo. Avances en Ciencias Veterinarias 2002; 17: 24-27.
12. Bonilla A, Cabrera A. Requerimiento de Vitamina C durante el tratamiento de ortodoncia. Acta Odontológica Venezolana 2010; 48 (2).
13. Satué M, Petzold C, Córdoba A, Ramis JM, Monjo M. UV Photoactivation of 7-dehydrocholesterol on titanium implants enhances osteoblast differentiation and decreases Rankl gene expression. Acta Biomaterialia 2013; 9(3):5759-70.
14. Calvo-Guirado JL, Ramírez-Fernández MP, Gómez-Moreno G, Maté- Sánchez JE, Delgado-Ruiz R, Guardia J. Melatonin stimulates the growth of new bone around implants in the tibia of rabbits. J Pineal Res 2010; 49:356–363.
15. Almagro Fernández MI. Efecto de diferentes tratamientos antiosteoporóticos sobre la osteointegración de implantes dentales en un modelo experimental en conejos. E-prints Complutense UCM Tesis 2010. https://eprints.ucm.es/id/eprint/11521/
16. Manzano G, Montero J, Martín-Vallejo J, Del Fabbro M, Bravo M, Testori T. Risk Factors in Early Implant Failure: A Meta-Analysis. Implant Dent 2016; 25(2):272-80.
17. Grant B-TN, Pancko FX, Kraut RA. Outcomes of placing short dental implants in the posterior mandible: a retrospective study of 124 cases. J Oral Maxillofac Surg 2009; 67(4):713-7.
18. Misch CE, Steignga J, Barboza E, Misch-Dietsh F, Cianciola LJ, Kazor C. Short dental implants in posterior partial edentulism: a multicenter retrospective 6-year case series study. J Periodontol 2006; 77(8):1340-7.
19. Olate S, Negreiros Lyrio MC, De Moraes M, Mazzonetto R, Fernandez Moreira RW. Influence of diameter and length of implant on early dental implant failure. J Oral Maxillofac Surg 2010; 68(2):414-9.
20. Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res 2006; 17 (2):35-51.
21. Banchero R, Conterno. FCVUNLP, INTI. Evaluación in vivo del torque de extracción de implantes dentales
con diferentes tratamientos de superficie. 2019. https://tree-oss.com/2019/wp-content/uploads/2019/02/Estudio_OXALIFE.pdf
22. Klokkevold PR, Johnson P, Dadgostari S, Caputo A, Davies JE, Nishimura RD. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. Clin. Oral Impl. Res 2001; 2(4):350-7.
23. Bustos Malberti S, Correa Patiño D, Crespo I, Juaneda MA, Ibáñez MC, Ibáñez JC. Evaluación de torque de remoción en implantes dentales 3i, B&w y Tree-oss. Estudio experimental en conejos. Rev Asoc Odontol Argent 2016;104: 150-159.
24. Turkyilmaz I, Sennerby L, Mc Glumphy EA, Tözüm TF. Biomechanical aspects of primary implant stability: a human cadaver study. Clin Implant Dent and Relat Res 2009; 11(2):113-9.
25. Scarano A, Degidi M, Iezzi G, Petrone G, Piattelli A. (2006) Correlation between implant stability quotient and bone-implant contact: a retrospective histological and histomorphometrical study of seven titanium implants retrieved from humans. Clin Implant Dent Relat Res 8(4): 218-22.
26. Cho SA, Park KT. The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials 2003; 24(20) 3611-7.
27. Hoffmann O, Angelov N, Zafiropoulos GG, Andreana S. Osseointegration of Zirconia Implants with Different Surface Characteristics: An Evaluation in Rabbits, Int J Oral Maxillofac Implants 2012; 27(2):352-8.
28. Klokkevold PR, Nishimura RD, Adachi M, Caputo A. Osseointegration enhanced by chemical etching of the titanium surface: A torque removal study in the rabbit. Clin Oral Impl Res 1997; 8:442-447.
29. Sul YT, Johansson C, Albrektsson T. Which Surface Properties Enhance Bone Response to Implants? Comparison of Oxidized Magnesium, TiUnite, and Osseotite Implant Surfaces. Int J Prosthodont 2006; 19(4): 319-28.
30. Cordioli G, Majzoub Z, Piattelli A, Scarano A. Removal Torque and Histomorphometric Investigation of 4 Different Titanium Surfaces: An Experimental Study in the Rabbit Tibia. Int J Oral Maxillofac Implants 2000; 15(5):668-74.
31. Queiroz TP, Souza FÁ, Guastaldi AC, Margonar R, Garcia IR Jr., Hochuli-Vieira E. Commercially pure titanium implants with surfaces modified by laser beam with and without chemical deposition of apatite. Biomechanical and topographical analysis in rabbits. Clin Oral Implants Res 2013; 24(8):896-903.
32. Calvo-Guirado JL, Satorres M, Negri B, Ramírez-Fernández P, Maté-Sánchez JE, Delgado-Ruiz R, Gómez-Moreno G, Abboud M, Romanos GE. Biomechanical and histological evaluation of four different titanium implant surface modifications: an experimental study in the rabbit tibia. Clin Oral Invest 2014; 18:1495–1505.
33. Kang NS, Li LJ, Cho SA. Comparison of removal torques between laser treated and SLA-treated implant surfaces in rabbit tibiae. J Adv Prosthodont 2014; 6(4):302-8.
34. Koh JW, Yang JH, Han JS, Lee JB, Kim SH. Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits. J Adv Prosthodont 2009;1(2):107-12.
35. Sohn SH, Cho SA. Comparison of Removal Torques for Implants with Hydroxyapatite-Blasted and Sandblasted and Acid-Etched Surfaces. Implant Dent 2016; 25(5):581-7.
36. Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant Materials, Designs, and Surface Topographies: Their Effect on Osseointegration. A Literature Review. Int J Oral Maxillofac Implants 2000;15(5):675-90
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) después del su publicación en la revista, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).