Effect of diabetes on stem cells of the oral cavity. A brief review
Keywords:
stem cells, diabetes, oral cavity, regenerationAbstract
Abstract
Tissue engineering is one of the pillars of regeneration techniques in medicine, based on the use of mesenchymal stem cells (MSCs). MSCs have self-renewal and differentiation capabilities in multiple lines, due to which they are multipotent mature cells. MSCs can be spread over several tiles, a good amount of MSCs is in the oral cavity, including parts such as the alveolar bone, periodontal ligament, dental pulp, dental follicle, oral mucosa and gums. Despite being a major advance in medical sciences, the use of MSCs may be limited by several factors that affect the biological capabilities of these cells. Considering the oral cavity as one of the main sources of obtaining a high amount MSCs, one of the factors that has great repercussions on oral health and diabetes, the clearest example is the two-way relationship that has periodontitis today. periodontitis is considered the sixth complication of diabetes. Given the above, it is necessary to identify the effects that could also have on the MSCs obtained in the oral cavity, effects that could hinder their use in tissue engineering. The purpose of this review is to describe the effect of diabetes on MSCs in the oral cavity.
Key words: stem cells, diabetes, oral cavity, regeneration
References
1. Wang M, Yuan Q, Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018; 2018:3057624.
2. Madrigal M, Rao KS, Riordan, NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014; 12(1):1-14.
3. Kamel AHM, Kamal SM, Abubakr N. Effect of smoking on the proliferation capacity and osteogenic potential of human dental pulp stem cells (DPSCs). Dent Med Probl. 2020; 57(1):1-6.
4. De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016; 8(3):73–87.
5. Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, et al. Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015; 33(3):627–638.
6. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci. 2000; 97: 13625–13630.
7. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429):149-55.
8. Takahashi M, Yamada Y, Ozawa R, Ohya M, Ito K, et al. Expression of Odontoblastic-related Genes in Human Dental Follicle Cells, Dental Pulp Stem Cells, and Oral Mucosal Cells. Int J Oral-Med Sci. 2004; 3(1):41–48.
9. Trubiani O, Zalzal SF, Paganelli R, Marchisio M, Giancola R, et al. Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J Cell Physiol. 2010; 225(1):123-31.
10. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. J Endod. 2008; 34(2):166–171.
11. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24(2):155-65.
12. Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, et al. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells 2010; 28(5):984-95.
13. Diomede F, Rajan TS, Gatta V, D’Aurora M, Merciaro I, et al. Stemness Maintenance Properties in Human Oral Stem Cells after Long-Term Passage. Stem Cells Int.2017; 2017:5651287.
14. WHO. Informe mundial sobre la diabetes: Resumen de orientación. Disponible en: https://www.who.int/diabetes/global-report/es/
15. Albert DA, Ward A, Allweiss P, Graves DT, Knowler WC, Kunzel C, et al. Diabetes y enfermedades bucodentales: implicaciones para los profesionales de la salud. Ann. NY Acad Sci. 2012; 1255: 1-15.
16. Mauri-Obradors E, Estrugo-Devesa A, Jane-Salas E, Vinas M, Lopez-Lopez J. Oral manifestations of Diabetes Mellitus. A systematic review. Med Oral Patol Oral Cir Bucal 2017; 22 (5):e586-94.
17. Loe H. Periodontal disease; the sixth complication of diabetes mellitus. Diabetes Care 1993; 16(1):329‐ 334.
18. Kocher T, König J, Borgnakke WS, Pink C, Meisel P. Periodontal complications of hyperglycemia/diabetes mellitus: Epidemiologic complexity and clinical challenge. Periodontol. 2000 2018; 78(1):59–97.
19. Guo ZL, Gan SL, Cao CY, Fu R, Cao SP, et al. Advanced glycosylated end products restrain the osteogenic differentiation of the periodontal ligament stem cell. J Dent Sci. 2019; 14(2): 146–151.
20. Liu Q, Hu CH, Zhou CH, Cui XX, Yang K, et al. DKK1 rescues osteogenic differentiation of mesenchymal stem cells isolated from periodontal ligaments of patients with diabetes mellitus induced periodontitis. Sci Rep. 2015; 5(1):1-11.
21. Kato H, Taguchi Y, Tominaga K, Kimura D, Yamawaki I, et al. High Glucose Concentrations Suppress the Proliferation of Human Periodontal Ligament Stem Cells and Their Differentiation Into Osteoblasts. J Periodontol. 2016; 87(4):e44–e51.
22. Zhang S, Song S, Wang S, Duan Y, Zhu W. Type 2 diabetes affects postextraction socket healing and influences first‐stage implant surgery: A study based on clinical and animal evidence. Clin Implant Dent Relat Res.2019; 21(3):436-445.
23. Luo H, Zhu W, Mo W, Liang M. High-glucose concentration aggravates TNF-alpha-induced cell viability reduction in human CD146-positive periodontal ligament cells via TNFR-1 gene demethylation. Cell Biol Int. 2020 Dec;44(12):2383-2394.
24. Guo Z, Chen R, Zhang F, Ding M, Wang P. Exendin-4 relieves the inhibitory effects of high glucose on the proliferation and osteoblastic differentiation of periodontal ligament stem cells. Arch Oral Biol. 2018; 91:9–16.
25. Zhang K, Liu F, Jin D, Guo T, Hou R, et al. Autophagy preserves the osteogenic ability of periodontal ligament stem cells under high glucose conditions in rats. Arch Oral Biol. 2019; 101:172–179.
26. Kichenbrand C, Grossin L, Menu P, Moby V. Behaviour of human dental pulp stem cell in high glucose condition: impact on proliferation and osteogenic differentiation. Arch Oral Biol. 2020;118:104859.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) después del su publicación en la revista, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).