Mass appraisal of urban land value using artificial intelligence. The case of San Francisco city, Córdoba, Argentina.

Authors

  • Juan Pablo Carranza
  • Mario Andrés Piumetto Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Estudios Territoriales
  • Micael Jeremías Salomón Universidad Nacional de Córdoba. Facultad de Ciencias Económicas
  • Federico Monzani Universidad Nacional de Córdoba. Facultad de Ciencias Económicas, Instituto de Economía y Finanzas.
  • Marcos Gaspar Montenegro Universidad Nacional de Córdoba. Facultad de Ciencias Económicas, Instituto de Economía y Finanzas
  • Mariano Augusto Córdoba Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. CONICET

Keywords:

Land value, Mass appraisal, Machine Learning, Random Forest, Ordinary Kriging

Abstract

The real estate market plays an important role in the economy and society, therefore, the downgrading of cadastral valuations, particularly urban land, has harmful effects on tax, territorial and housing public policies, property market, as in the stability of the finance system. For this reason, the cadastres face the challenge of developing massive valuations of a jurisdiction in order to provide updated and quality data, quickly and efficiently. Given the technological advance, the generation of large volumes of information and the progress associated with computer science, the ideas of massive appraisal of real estate by the catastres is increasingly taking hold. Under these needs and new situation, the results reflects the advantage of the predictive capacity in estimating the value of urban land by applying an algorithmic technique of machine learning, known as Random Forest, in combination with a geo-statistical technique called Ordinary Kriging for the treatment of error.

Author Biography

  • Juan Pablo Carranza

    Magister en Políticas Públicas. Lic. en economía. Universidad Siglo 21. Secretaría de Investigación.

References

Anselin, L. (1998). GIS research infrastructure for spatial analysis of real estate markets. Journal of Housing Research, 9, 113–133.

Antipov E.; Pokryshevskaya, E. (2012). Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert System with Applications, 39, 1772-1778.

Bonet J, Muñoz, A. y Pineda, C, Mannheim (2014). El potencial oculto: factores determinantes y oportunidades del impuesto a la propiedad inmobiliaria en América Latina. Banco Interamericano de Desarrollo.

Breiman, L. (2001). Random forests. Machine Learning, 45(1) 5–32.

Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. (1984). Classification and regression trees. California, Wadsworth, Inc.

Cervio, A. L. (2015). Expansión urbana y segregación socio-espacial en la ciudad de Córdoba (Argentina) durante los años ‘80. Astrolabio,14.

De Cesare, Claudia. (2012). Improving the Performance of the Property Tax in Latin America. Policy Focus Report. Lincoln Institute of Land Policy.

Hengl T.; Heuvelink G.; Kempen B.; Leenaars J.; Walsh M.; Shepherd K. (2015). Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE, 10(6).

Huang, B.; Wu, B.; Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices, International Journal of Geographical Information Science, 24(3) 383-401.

International Association of Assessing Officers (2003). Standard on automated valuation.

Jeremy, M. (2006). Mapping the Results of Geographically Weighted Regression.The Cartographic Journal. 43(2) 171-179

Jian, G.; Shi, D.; Zurada, J.; Levitan, A. (2014). Analyzing Massive Data Sets: An Adaptive Fuzzy Neural Approach for Prediction, with a Real Estate Illustration. Journal of Organizational Computing and Electronic Commerce, 24(1) 94-112.

Lockwood, T. y Rossini, P. (2011). Efficacy in Modelling Location Valuation models (AVMs). Within the Mass Appraisal Process. Pacific Rim Property Research Journal, 17(3) 418-442.

Morales Schechinger, C. (2007). Algunas reflexiones sobre el mercado de suelo urbano”. Mercados de suelo urbano en las ciudades latinoamericanas. Lincoln Institute of Land Policy (ed.).

Pérez-Planells,L.; Delegido, J.; et al. (2015). Análisis de métodos de validación cruzada para la obtención robusta de parámetros biofísicos. Revista de teledetección, 44. 55-65.

Piumetto, M. (2016). Diagnósticos catastros provinciales e impuesto inmobiliario, en Proyecto Modernización de los Sistemas de Gestión Financiera Pública Provincial, Argentina. BID, Ministerio del Interior, IERAL de Fundación Mediterránea (sin publicar).

Qingmin, M. (2014). Regression Kriging versus Geographically Weighted Regression for Spatial Interpolation. International Journal of Advanced Remote Sensing and GIS, 3(1) 606-615.

Reese, E. (2003). Instrumentos de gestión urbana, fortalecimiento del rol del municipio y desarrollo con equidad - Lincoln Institute of land policy (Ed.).

Sabatini, F. (2003). La segregación social del espacio en las ciudades de América Latina, BID: Desarrollo Social. Documento de Estrategia. Washington DC.

Serra, M. V., David E. Dowall, Diana Meirelles da Motta, and Michael Donovan. (2005). An examination of three Brazilian cities: Brasilia, Curitiba, and Recife. In Estudos estratéicos de apoio às politicas urbanas para os grupos de baixa renda no Brasil (Enabling strategy for moving upgrading to scale in Brazil). Urban land markets and urban land development. Washington, DC: Cities Alliance.

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2) 234-240.

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, volumen 46(2) 234-240.

Downloads

Published

2019-12-20

Issue

Section

Articles

How to Cite

Mass appraisal of urban land value using artificial intelligence. The case of San Francisco city, Córdoba, Argentina. (2019). Vivienda Y Ciudad, 6, 90-112. https://revistas.unc.edu.ar/index.php/ReViyCi/article/view/27090

Most read articles by the same author(s)