Persistência de IgM SARS-COV-2 em pacientes que completaram quarentena para COVID-19, em Arequipa, Peru

Autores

  • Renzo Reynaldo Gamarra Manrique Facultad de Medicina, Universidad Católica de Santa María. Arequipa. Perú
  • Sara Angélica Moscoso Pinares Médico de Medicina Familiar, Posta Médica La Joya, ESSALUD. Perú.
  • Jael Doria Riveros Alvaro Escuela de Posgrado Universidad Católica de Santa María, Arequipa. Perú

DOI:

https://doi.org/10.31052/1853.1180.v29.n1.32051

Palavras-chave:

Infecções por coronavírus, sorologia, imunoglobulina M, reações de falso positivo, doenças autoimunes, fator reumatóide

Resumo

Objetivo: Analisar as características clínicas de pacientes convalescentes para COVID-19, que apresentam persistência de IgM.

Material e métodos: Estudo analítico. Foram avaliados 614 pacientes, do dia 21 ao 175 após o início dos sintomas. Houve 19 casos com IgM positivo (3,1%). Um grupo controle foi utilizado para comparar as variáveis ​​clínicas, agrupando-as por categorias e aplicando o teste Xi-quadrado ou exato de Fisher (p<0,05).

Resultados: A partir do final da quarentena (dia 21), foram registrados casos positivos de IgM, atingindo o maior número no intervalo de 44-65 dias (42,1%). Evidenciou-se associação entre a presença de IgM positiva e doenças autoimunes (p=0,02).

Conclusões: Há persistência de positividade para IgM SARS-CoV-2 até 175 dias após o início dos sintomas, principalmente associada à reação cruzada com doenças autoimunes. Fornecem-se informações úteis para esclarecer as causas e auxiliar no tratamento médico.

Palavras-chave: infecções por coronavírus; sorologia; imunoglobulina M, reações falso-positivas; doenças autoimunes.

Downloads

Não há dados estatísticos.

Biografia do Autor

Jael Doria Riveros Alvaro, Escuela de Posgrado Universidad Católica de Santa María, Arequipa. Perú

Investigadora en Universidad denominada UCSM

Referências

Zhang Z, Xiao K, Zhang X, Roy A, Shen Y. Emergence of SARS-like coronavirus in China: an update. J Infect 2020, 80 (5): e28-e29. doi: 10.1016/j.jinf.2020.03.010

Mercado M, Malagón-Rojas J, Delgado G, Rubio V, Muñoz L, Parra E, et al. Evaluation of nine serological rapid tests for the detection of SARS-CoV-2. Rev Panam Salud Publica. 2020; 44: e149. doi: 10.26633/RPSP.2020.149

Loeffelholz M, Yi-Wei Tang Y. Laboratory diagnosis of emerging human coronavirus infections – the state of the art, Emerging Microbes & Infections, 2020. 9: (1): 747-756. doi: 10.1080/22221751.2020.1745095

Cañete P, Vinuesa C, COVID-19 makes B cells forget, but T cells remember, Cell, 2020, S0092-8674 (20): 31154-5. doi: 10.1016/j.cell.2020.09.013.

Barnes C, West A, Huey-Tubman K, Hoffmann M, Sharaf N, Hoffman P, et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies, Cell, 2020, S0092-8674 (20): 30757-1. doi: 10.1016/j.cell.2020.06.025.

Isho B, Abe K, Zuo M, Jamal A, Rathod B, Wang J, et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 2020. 5 (52): eabe5511. doi: 10.1126/sciimmunol.abe5511

Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol. 2020; 38 (5): 515-518. doi: 10.1038/d41587-020-00010-2.

Wang Q, Du Q, Guo B, Mu D, Lu X, Ma Q, et al. A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzymelinked immunosorbent assays. J Clin Microbiol. 2020; 58: e00375-20. doi: 10.1128/JCM.00375-20

Hernández-Pérez J. Martín-González E, Pino M, Strengths and weakness of diagnostic tests of SARS CoV-2infection. Med Clin (Barc). 2020; 155 (10): 463–469. doi: 10.1016/j.medcli.2020.05.019

Stadlbauer D, Amanat F, Chromikova V, Teo C, McMahon M, Simon V. et al. SARS-CoV-2 Seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup. Curr Protoc Microbiol, 2020; 57 (1): e100. doi: 10.1002/cpmc.100

Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Antibody responses to SARS-CoV-2 in patients of novel coronavirus. Clinical Infectious Diseases, 71 (16): 2027–2034. doi: 10.1093/cid/ciaa344

Lozada I, Nuñez C. COVID-19: respuesta inmune y perspectivas terapéuticas. Rev. perú. med. exp. salud pública. 2020, 37 (2): 312-319. doi: 10.17843/rpmesp.2020.372.5490

Mikuls T, Johnson S, Fraenkel L, Arasaratnam R, Baden L, Bermas B, et al. American College of Rheumatology guidance for the management of adult patients with rheumatic disease during the COVID-19 pandemic, Arthritis Rheumatol. 2020; 72 (8): 1241-1251. doi: 10.1002/art.41301

Renzo Reynaldo GM. Current Clinical-Epidemiological Profile of Patients with COVID-19 in Reference Hospital of Perú. American J Epidemiol Public Health. 2020; 4 (3): 081-085. doi: 10.37871/ajeph.id35

Nath H, Mallick A, Roy S, Sukla S, Basu K, De A, et al. Dengue antibodies can cross-react with SARS-CoV-2 and vice versa-Antibody detection kits can give false-positive results for both viruses in regions where both COVID-19 and Dengue co-exist. medRxiv 2020 (Preprint): 20145797. doi: 10.1101/2020.07.03.20145797

Vinyé M, Bausà R, Corominasa H. Cross-reactions between rheumatoid factor and IgM SARS-CoV-2. Med Clin (Barc). 2020; 155 (9): 414–420. doi: 10.1016/j.medcli.2020.07.008

Carfì A, Bernabei R, Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020. 324 (6): 603-605. doi:10.1001/jama.2020.12603

Jiang M, Li Y, Han M, Wang Z, Zhang Y. Recurrent PCR positivity after hospital discharge of people with coronavirus disease 2019 (COVID-19). Journal of Infection, 2020. 81: 162–164. doi: 10.1016/j.jinf.2020.03.024

Stavem K, Ghanima W, Olsen K, Gilboe H, Einvik G. Persistent symptoms 1.5–6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax, 2020; 0: 1–3 (Epub ahead of print). doi: 10.1136/thoraxjnl-2020-216377

Mo H, Zeng G, Ren X, Li H, Ke Ch, Tan Y. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology, 2006, 11 (1): 49–53. doi: 10.1111/j.1440-1843.2006.00783.x

To K, Tsang O, Leung W, Tam A, Wu T, Lung D, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020; 20 (5): 565-574. doi:10.1016/S1473-3099(20)30196-1

Patel R, Babady E, Theel E, Pinsky B, St. George K, Tara C. Smith T, Bertuzzi S. Report from the American Society for Microbiology COVID-19 international summit, 23 March 2020: value of diagnostic testing for SARS-CoV-2/COVID-19. mBio 2020; 11 (2): e00722-20. Doi: 10.1128/mBio.00722-20.

Lou B, Li T, Zheng SF, Su Y, Li Z, Liu W, et al. Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset. Eur Respir J. 2020: 2000763 [Epub ahead of print]. doi: 10.1183/13993003.00763-2020

Gussin H, Russo K, Teodorescu M. Effect of circulating immune complexes on the binding of rheumatoid factor to histones. Ann Rheum Dis 2000; 59 (5): 351–358. doi.org/10.1136/ard.59.5.351

Rojko J, Evans M, Price S, Han B, Waine G, DeWitte M, et al. Formation, Clearance, Deposition, Pathogenicity, and Identification of Biopharmaceutical-related Immune Complexes: Review and Case Studies. Toxicologic Pathology, 42: 725-764, 2014. doi: 10.1177/0192623314526475

Hutt M, Färber-Schwarz A, Unverdorben F, Richter F, Kontermann R. Plasma Half-life Extension of Small Recombinant Antibodies by Fusion to Immunoglobulin-binding Domains. The Journal of Biological Chemistry, 2011, 287 (7): 4462-4469. doi: 10.1074/jbc.m111.311522

Haberman R, Axelrad J, Chen A, Castillo R, Yan D, Izmirly P, et al. Covid-19 in Immune-Mediated Inflammatory Diseases. Case Series from New York. Engl J Med, 2020; 383: 85-88. doi: 10.1056/NEJMc2009567

Zhang L, Shen F, Chen F, Lin Z. Origin and evolution of the 2019 novel coronavirus. Clin Infect Dis, 2020. 71 (15): 882-883. doi: 10.1093/cid/ciaa112.

Moderbacher C, Ramirez S, Dan J, Grifoni A, Hastie K, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 2020, S0092-8674 (20): 31235-6. doi: 10.1016/j.cell.2020.09.038.

Liu W, Liu L, Kou G, Zheng Y, Ding Y, Ni W, et al. Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. J Clin Microbiol. 2020, 58 (6): e00461-20. doi: 10.1128/jcm.00461-20.

Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020. 584: 115–119. doi: 10.1038/s41586-020-2380-z

Bosch A, Biesbroek G, Trzcinski K, Sanders E, Bogaert D. Viral and Bacterial Interactions in the Upper Respiratory Tract. PLoS Pathogens, 2013. 9 (1): e1003057. doi: 10.1371/journal.ppat.1003057

Moscola J, Sembajwe G, Jarrett M, Farber B, Chang T, McGinn T, et al. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the NewYork City Area. 2020. JAMA. 2020; 324 (9): 893-895. doi:10.1001/jama.2020.14765

Carabaña Morales J. Datos de encuesta para estimar la prevalencia de COVID-19. Un estudio piloto en Madrid capital. Rev Esp Salud Pública. 2020; 94: 17 de noviembre e202011159

Muñoz L, Pífano M, Bolzán A, Varela T, Comes Y, Specogna M, et al. Vigilancia y Seroprevalencia: Evaluación de anticuerpos IgG para SARS-Cov2 mediante ELISA en el barrio popular Villa Azul, Quilmes, Provincia de Buenos Aires, Argentina. Scielo (preprints). doi: 10.1590/SciELOPreprints.1147

Publicado

2023-06-30

Como Citar

1.
Gamarra Manrique RR, Moscoso Pinares SA, Riveros Alvaro JD. Persistência de IgM SARS-COV-2 em pacientes que completaram quarentena para COVID-19, em Arequipa, Peru. Rev. Salud Pública (Córdoba) [Internet]. 30º de junho de 2023 [citado 17º de julho de 2024];29(1). Disponível em: https://revistas.unc.edu.ar/index.php/RSD/article/view/32051

Edição

Seção

Artigos Originais