Aplicación de aerofotogrametría con UAV para la actualización de la superficie topobatimétrica en embalses de montaña
Palabras clave:
dron, embalse, topobatimetría, ortomosaico, aerofotogrametríaResumen
Este estudio examinó el potencial del uso de datos de imágenes de alta resolución adquiridos por UAV (vehículo aéreo no tripulado) para la generación de la topografía de las riberas de un embalse de montaña, para ser combinado con un levantamiento batimétrico con el objetivo de actualizar la superficie topobatimétrica. La metodología propuesta se enmarca en los pasos secuenciales desde la planificación y ejecución del vuelo, la realización del procesamiento de las fotografías y la aplicación de procedimientos simplificados para validar la precisión del MDT de las riberas del embalse. Esta validación permite minimizar los errores en planimetría y altimetría, incorporando puntos de control en tierra (GCP ́s) para la generación de la nube de puntos densa y modelo digital de terreno (MDT). Adicionalmente también la incorporación al procesamiento de los puntos de control de nivel de agua permitió realizar una segunda corrección en altimetría en algunas zonas específicas, nivelando la superficie y el MDT generado. El estudio también proporciona evidencia convincente de que la aplicación de aerofotogrametría para el levantamiento topográfico de las riberas de un embalse de montaña disminuye los tiempos de trabajo de campo y simplifica la logística requerida, generando productos de buena precisión y mayor detalle, siendo una alternativa de bajo costo operacional para el monitoreo de la sedimentación.
Descargas
Referencias
[1] Agisoft. (2016). Agisoft PhotoScan user manual: Professional edittion.
[2] Agüera Vega, F., Carvajal Ramírez, F., & Martínez Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221–227. https://doi.org/10.1016/J.MEASUREMENT.2016.12.002
[3] Alvarez, L. V., Moreno, H. A., Segales, A. R., Pham, T. G., Pillar-Little, E. A., & Chilson, P. B. (2018). Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sensing, 10(9), 1362–1362. https://doi.org/10.3390/RS10091362
[4] Barba, S., Barbarella, M., Benedetto, A. D., Fiani, M., Gujski, L., & Limongiello, M. (2019). Accuracy Assessment of 3D Photogrammetric Models from an Unmanned Aerial Vehicle. Drones 2019, Vol. 3, Page 79, 3(4), 79–79. https://doi.org/10.3390/DRONES3040079
[5] Brasington, J., Rumsby, B. T., & Mcvey, R. A. (2000). Monitoring and modelling morphological change in a braided gravel-bed river using high resolution gps-based survey. Earth Surface Processes and Landforms.
[6] Carbonneau, P. E., Lane, S. N., & Bergeron, N. (2006). Feature based image processing methods applied to bathymetric measurements from airborne remote sensing in fluvial environments. Earth Surface Processes and Landforms, 31(11), 1413–1423. https://doi.org/10.1002/esp.1341
[7] Carvalho, N. de O., Júnior, N. P. F., & Dos Santos, P. M. (2000). GUIA DE AVALIAÇÃO DE ASSOREAMENTO DE RESERVATÓRIOS.
[8] Chandler, J., Ashmore, P., Paola, C., Gooch, M., & Varkaris, F. (2002). Monitoring River-Channel Change Using Terrestrial Oblique Digital Imagery and Automated Digital Photogrammetry. Annals of the Association of American Geographers, 92(4), 631–644. https://doi.org/10.1111/1467-8306.00308
[9] Chuvieco, E. (1995). Fundamentos de teledetección espacial: Vol. Segunda Edición (Ediciones RIALP S.A.).
[10] Cryderman, C., Bill Mah, S., & Shufletoski, A. (2014). Evaluation of UAV Photogrammetric Accuracy for Mapping and Earthworks Computations. GEOMATICA, 68(4), 309–317. https://doi.org/10.5623/CIG2014-405
[11] DJI. (2021). Phantom 4 RTK - DJI. https://www.dji.com/phantom-4-rtk
[12] Erena, M., Atenza, J. F., García-Galiano, S., Domínguez, J. A., & Bernabé, J. M. (2019). Use of Drones for the Topo-Bathymetric Monitoring of the Reservoirs of the Segura River Basin. Water 2019, Vol. 11, Page 445, 11(3), 445–445. https://doi.org/10.3390/W11030445
[13] Ferrari, R. L., & Collins, K. (2006). Reconnaissance Technique for Reservoir Surveys 2006. U. S. Bureau of Reclamation’s Sedimentation and River Hydraulics Group. https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/ReconnaissanceTechniqueResSurveys04-2006_508.pdf
[14] Forlani, G., Dall’Asta, E., Diotri, F., Cella, U. M. di, Roncella, R., & Santise, M. (2018). Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing 2018, Vol. 10, Page 311, 10(2), 311–311. https://doi.org/10.3390/RS10020311
[15] Hamylton, S. M., Hedley, J. D., & Beaman, R. J. (2015). Derivation of High-Resolution Bathymetry from Multispectral Satellite Imagery: A Comparison of Empirical and Optimisation Methods through Geographical Error Analysis. Remote Sensing, 7(12), 16257–16273. https://doi.org/10.3390/rs71215829
[16] Hauet, A., Kruger, A., Krajewski, W. F., Bradley, A., Asce, A. M., Muste, M., Creutin, J.-D., & Wilson, M. (2008). Experimental System for Real-Time Discharge Estimation Using an Image-Based Method. Journal of Hydrologic Engineering. https://doi.org/10.1061/ASCE1084-0699200813:2105
[17] Hernández L., D. (2006). Introducción a la fotogrametría digital.
[18] Hugenholtz, C., Brown, O., Walker, J., Barchyn, T., Nesbit, P., Kucharczyk, M., & Myshak, S. (2016). Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Canadian Science Publishing, 70(1), 21–30. https://doi.org/10.5623/CIG2016-102
[19] Hupy, J. P., & Wilson, C. O. (2021). Modeling Streamflow and Sediment Loads with a Photogrammetrically Derived UAS Digital Terrain Model: Empirical Evaluation from a Fluvial Aggregate Excavation Operation. Drones 2021, 5(1), 20–20. https://doi.org/10.3390/DRONES5010020
[20] Jiménez J., S. I., Ojeda Bustamante, W., Ontiveros Capurata, R. E., Flores Velázquez, J., Marcial Pablo, M. de J., & Robles Rubio, B. D. (2017). Quantification of the error of digital terrain models derived from images acquired with UAV. Ingeniería Agrícola y Biosistemas, 9(2), 85–100. https://doi.org/10.5154/R.INAGBI.2017.03.007
[21] Ke, W.-T., Wang, W.-L., Liu, H.-H., Chang, J.-Y., Huang, Y.-C., & Capart, H. (2019). Rapid infill of Wushe Reservoir, Central Taiwan-Ten years of field observations. 3rd International Workshop on Sediment Bypass Tunnels. https://scholars.lib.ntu.edu.tw/handle/123456789/411826
[22] Klemas, V. (2015). Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. Journal of Coastal Research, 315, 1260–1267. https://doi.org/10.2112/JCOASTRES-D-15-00005.1
[23] Koutalakis, P., Tzoraki, O., & Zaimes, G. (2019). UAVs for Hydrologic Scopes: Application of a Low-Cost UAV to Estimate Surface Water Velocity by Using Three Different Image-Based Methods. Drones 2019, 3(1), 14–14. https://doi.org/10.3390/DRONES3010014
[24] Lafferty, B., Quinn, R., & Breen, C. (2006). A side-scan sonar and high-resolution Chirp sub-bottom profile study of the natural and anthropogenic sedimentary record of Lower Lough Erne, northwestern Ireland. Journal of Archaeological Science, 33(6), 756–766. https://doi.org/10.1016/j.jas.2005.10.007
[25] León Mata, G. D., Pinedo Álvarez, A., & Martínez Guerrero, J. H. (2014). Aplicación de sensores remotos en el análisis de la fragmentación del paisaje en Cuchillas de la Zarca, México. Investigaciones Geográficas, 84, 42–53. https://doi.org/10.14350/RIG.36568
[26] Li, S., & Millar, R. G. (2011). A two-dimensional morphodynamic model of gravel-bed river with floodplain vegetation. Earth Surface Processes and Landforms, 36(2), 190–202. https://doi.org/10.1002/ESP.2033
[27] Millard, K., Redden, A. M., Webster, T., & Stewart, H. (2013). Use of GIS and high resolution LiDAR in salt marsh restoration site suitability assessments in the upper Bay of Fundy, Canada. Wetlands Ecology and Management, 21(4), 243–262. https://doi.org/10.1007/s11273-013-9303-9
[28] Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. https://doi.org/10.1007/S12518-013-0120-X
[29] Pedraza S., A. (2019). Análisis comparativo del levantamiento topográfico tradicional y el levantamiento topográfico con RPAS en la Huaca Aznapuquio, Los Olivos—2019 [Universidad César Vallejo]. In Repositorio Institucional—UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/36819
[30] Pérez P., J., López C., G., Velázquez L., N., & López C., I. (2021). Evaluación de un prototipo de RPAS para el levantamiento topográfico con imágenes RGB. Revista Ingeniería Agrícola, Vol. 11, Núm. 2, E04, 2021. https://www.redalyc.org/journal/5862/586266250004/html/
[31] Pino V., E. (2019). Los drones una herramienta para una agricultura eficiente: Un futuro de alta tecnología. Idesia (Arica), 37(1), 75–84. https://doi.org/10.4067/S0718-34292019005000402
[32] Pix4D. (2017). Pix4Dmapper: User Manual. https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf
[33] Powers, J., Brewer, S. K., Long, J. M., & Campbell, T. (2015). Evaluating the use of side-scan sonar for detecting freshwater mussel beds in turbid river environments. Hydrobiologia, 743(1), 127–137. https://doi.org/10.1007/s10750-014-2017-z
[34] Quispe, O. (2015). Análisis de GSD para la generación de cartografía utilizando la tecnología drone, huaca de la Universidad Nacional Mayor de San Marcos. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, 18(36). https://revistasinvestigacion.unmsm.edu.pe/index.php/iigeo/article/view/12014
[35] Sánchez-Carnero, N., Aceña, S., Rodríguez-Pérez, D., Couñago, E., Fraile, P., & Freire, J. (2012). Fast and low-cost method for VBES bathymetry generation in coastal areas. Estuarine, Coastal and Shelf Science, 114, 175–182. https://doi.org/10.1016/j.ecss.2012.08.018
[36] Segales, A., Gregor, R., Rodas, J., Gregor, D., & Toledo, S. (2016). Implementation of a low cost UAV for photogrammetry measurement applications. 2016 International Conference on Unmanned Aircraft Systems, ICUAS 2016, 926–932. https://doi.org/10.1109/ICUAS.2016.7502609
[37] Stott, E., Williams, R. D., & Hoey, T. B. (2020). Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones 2020, Vol. 4, Page 55, 4(3), 55–55. https://doi.org/10.3390/DRONES4030055
[38] Tucci, G., Gebbia, A., Conti, A., Fiorini, L., & Lubello, C. (2019). Monitoring and Computation of the Volumes of Stockpiles of Bulk Material by Means of UAV Photogrammetric Surveying. Remote Sensing 2019, Vol. 11, Page 1471, 11(12), 1471–1471. https://doi.org/10.3390/RS11121471
[39] Vanoni, V. A. (2006). Sedimentation Engineering. In Sedimentation Engineering (pp. 1–418). American Society of Civil Engineers. https://doi.org/10.1061/9780784408230
[40] Veli, I. (2017). Determination of Reservoir Sedimentation with Bathymetric Survey: A Case Study of Obruk Dam Lake. ResearchGate. https://www.researchgate.net/publication/331824853_Determination_of_Reservoir_Sedimentation_with_Bathymetric_Survey_A_Case_Study_of_Obruk_Dam_Lake
[41] Villalba, N. (2015). Topografía Aplicada. Editorial Macro. https://ebooks.editorialmacro.com/library/search/Topografía
[42] Watanabe, Y., & Kawahara, Y. (2016). UAV Photogrammetry for Monitoring Changes in River Topography and Vegetation. 12th International Conference on Hydroinformatics, 154, 317–325. https://doi.org/10.1016/J.PROENG.2016.07.482
[43] Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/J.GEOMORPH.2012.08.021
[44] Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 35(2), 136–156. https://doi.org/10.1002/ESP.1886
[45] Woodget, A., & Austrums, R. (2017). Subaerial Gravel Size Measurement Using Topographic Data Derived From a UAV-SfM Approach. Earth Surface Processes and Landforms, 42(9), 1434–1443. https://doi.org/10.1002/(ISSN)1096-9837
[46] Yang, F., Bu, X., Ma, Y., Lu, X., Wang, M., & Shi, B. (2017). Geometric calibration of multibeam bathymetric data using an improved sound velocity model and laser tie points for BoMMS. Ocean Engineering, 145, 230–236. https://doi.org/10.1016/j.oceaneng.2017.09.010
[47] Zhao, J., Zhao, X., Zhang, H., & Zhou, F. (2017). Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model. Remote Sensing, 9, 426. https://doi.org/10.3390/rs9050426
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Facultad de Ciencias Exactas, Físicas y Naturales (Universidad Nacional de Córdoba)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores conservan los derechos de autor y conceden a la revista el derecho de la primera publicación.
Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).