Efecto de la temperatura y del origen del inóculo en la producción de biohidrógeno
Palabras clave:
Biohidrógeno, Fermentación, Cultivos mixtos, Temperatura.Resumen
El hidrógeno es considerado un combustible ambientalmente amigable y puede producirse en el proceso de acidogénesis durante la degradación anaerobia de compuestos orgánicos. Surge así la necesidad de estudiar bioprocesos limpios y basados en recursos renovables para la producción de hidrógeno. Se investigó el efecto de la temperatura de cultivo y del uso de inóculos mixtos de distintos orígenes en la producción biológica de hidrógeno. El estudio se llevó a cabo mediante ensayo batch. Se realizó la incubación en tres condiciones de temperatura: 20, 35 y 45°C. Se evaluó tres tipos de consorcios naturales: tierra, compost comercial y barros de una planta de tratamiento de aguas residuales. El inóculo tratado mediante shock térmico se cultivó a pH 5,5 en un medio rico en glucosa. Las diferentes fuentes de inóculo y la temperatura afectaron la cantidad de hidrógeno producida. La concentración máxima de hidrógeno y la velocidad máxima de producción aumentó cuando la temperatura se incrementó. A 45°C el tiempo adaptación del inóculo fue mayor. El consorcio de barros exhibió la mayor velocidad de adaptación y el compost logró la concentración de hidrógeno más alta. Las diferencias en las comunidades microbianas fueron probablemente responsables del comportamiento diverso de los inóculos.Descargas
Referencias
[1] APHA, AWWA, WEF, (2013), Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, New York.
[2] Bundhoo M. y Mohee R., (2016), “Inhibition of dark fermentative bio-hydrogen production: A review”, International Journal of Hydrogen Energy, 41(16):6713-6733.
[3] Chen C. C., Lin C. Y. y Lin M. C., (2002), “Acid-base enrichment enhances anaerobic hydrogen production process”, Applied Microbiology Biotechnology, 58:224-228.
[4] Cui M. y Shen J., (2012), “Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation”, International Journal of Hydrogen Energy, 37:1120-1124.
[5] Danko A., Pinheiro F., Abreu A. y Alves, M., (2008), “Effect of methanogenic inhibitors, inocula type, and temperature on biohydrogen production from food components”, Environmental Engineering and Management Journal, 7(5):531-536.
[6] Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P. y Esposito G., (2015), “A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products”, Applied Energy, 144:73-95.
[7] Hawkes F. R., Hussy I., Kyazze G., Dinsdale R. y Hawkes D. L., (2007), “Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress”. International Journal Hydrogen Energy, 32(2):172-184.
[8] Kanai T., Imanaka H., Nakajima A., Uwamori K., Omori Y., Fukui T., Atomi H. y Imanaka, T., (2005), “Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1”, Journal Biotechnology, 116(3):271-282.
[9] Kapdan I. y Kargi F., (2006), “Biohydrogen production from waste materials”, Enzyme and Microbial Technology, 38:569-582.
[10] Keskin T., Giusti L. y Azbar N., (2012), “Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture”, International Journal Hydrogen Energy, 37:1418-1424.
[11] Miller G. L., (1959), “Use of dinitrosalicylic acid reagent for determination of reducing sugar”, Analytical Chemistry, 31:426-428.
[12] Valdez-Vazquez I. y Poggi-Varaldo H., (2009), “Hydrogen production by fermentative consortia”, Renewable and Sustainable Energy Reviews, 13:1000-1013.
Descargas
Publicado
Número
Sección
Licencia
Se permite cualquier explotación de la obra, incluyendo la explotación con fines comerciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción.