Road viaduct in a site of geological - geotechnical complexity

Authors

DOI:

https://doi.org/10.59069/24225703ee003

Keywords:

bearing capacity, foundation, slope stabilization

Abstract

Geotechnical problems in engineering constructions follow paradigms of theory and practice in variable proportions. Geotechnical engineering has the possibility of using standardized research and calculation procedures. However, frequently, the constructions are located in singular places, in which the extrapolation of experiences must be carefully used. Consequently, decision-making in the definition of geotechnical components must solve the problem of the link between the application of conventional calculation methods and the adoption of non-standardized solutions, such as an adaptation to the site of implementation of the work.

The construction of an 800-meter highway viaduct, on the west slope of the Sierras Chicas, in the Province of Córdoba, Argentina, shows this type of situation. The work is located in a mountain area, on the sector corresponding to the formation fault of the hill. The geotechnical study of this sector and the experience in the construction of the work itself, concluded in the need to modify the original design. Despite having defined the structural solution and developed the new executive project, during construction the foundations of the bridges were adapted to each local geotechnical condition.

This publication shows the way in which the terrain-structure interaction has been evaluated, concluding in the definition of the foundation of the bridges. Reflections are formulated regarding the need to improve knowledge of the site through the different stages of the project, from its conception to its construction, as well as the convenience of auscultation during the useful life of the work.

Author Biographies

  • Marcelo Esteban Zeballos, Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de Córdoba.

    Profesor Titular de la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de Córdoba, Argentina. Consultor de ZCI y Asociados.

  • Carlos Gerbaudo, Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de Córdoba

    Profesor Titular de la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de Córdoba, Argentina. Consultor de INGROUP Ingeniería.

References

Informe Geotécnico. Relevamiento Geológico-Geotécnico y Evaluación de Taludes de Corte – Ruta Provincial Nº 34 (Camino de las Altas Cumbres). Progresivas 6+150 a 6+450. (2015, mayo). AbyaTerra SRL.

Barton, N.R. y Bandis, S.C. (1982). Effects of block size on the shear behaviour of jointed rock. En Actas Proceedings of the 23rd. Symposium on Rock Mechanics (pp. 739-760). University of California.

Barton, N.R. y Bandis, S.C. (1990). Review of predictive capabilites of JRC-JCS model in engineering practice. En N. Barton y O. Stephansson (Eds.), Proceedings of the International Symposium on Rock Joints (pp. 603-610). Balkema.

CIRSOC 103 (2005). Reglamento Argentino para Construcciones Sismoresistentes. Instituto Nacional de Tecnología Industrial.

Chasrtes, R. (2004). Professional tasks, responsibilities and co-operation in ground engineering. ISSMGE.

Das, B.M. (2013). Fundamentos de Ingeniería Geotécnica. (4a ed.). Cengage Learning.

Deere, D. U. y Deere D. W. (1989). Rock Quality Designation (RQD) after twenty years, Contrat Report GL 89-1. US Army Engineering Waterways Experiment Station.

Hoek, E. (1983). Strength of jointed rock masses.. Géotechnique, 23(3), 187-223.

Hoek, E. (1994). Strength of rock and rock masses. ISRM News Journal, 2(2), 4-16.

Hoek E. y Diederichs, M. (2006). Empirical estimates of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43, 203–215.

Hoek, E. (2007). Practical Rock Engineering. Hoek’s Corner. https://www.rocscience.com/learning/hoeks-corner

Hoek, E. y Brown, E.T. (1997). Practical Estimated Rock Mass Strength. International Journal of Rock Mechanics and Minning Science and Geomechanics, 34(8), 1165-1186.

Marinos, P., Hoek, E. y Marinos, V. (2006). Variability of the engineering properties of rock masses quantified by the geological strength index: The case of ophiolites with special emphasis on tunnelling. Bulletin of Engineering Geology and the Environment, 65(2), 129-142. http://dx.doi.org/10.1007/s10064-005-0018-x

Martino, R., Guereschi, A. y Carignano, C. (2012). Influencia de la neotectónica preandina sobre la tectónica andina. El caso de la Falla de las Sierras Chicas, Sierras Pampeanas de Córdoba. Revista de la Asociación Geológica Argentina, 69 (2), 207-221.

Peck, R.B. (1969). Advantages and limitations of the observational method in applied soil mechanics. Geotechnique, 19(2), 171-187. https://doi.org/10.1680/geot.1969.19.2.171

Rocca, J., Decanini, L. y Prato, C. (1991). Riesgo sísmico en el valle longitudinal de las Sierras de Córdoba. Actas Asociación Argentina de Geología Aplicada a la Ingeniería, 1, 136-153.

Rocca R. J. (2008) Actualización de la percepción del Riesgo Sísmico en el Valle longitudinal de las sierras de Córdoba. Argentina. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 8 (1), 71-88.

Siegesmund, S., Steenken, A., Martino, R., Wemmer, K., Lopez de Luchi, M., Frei, R., Presnyakov, S. y Guereschi, A. (2010). Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). International Journal of Earth Sciences, 99(6), 1199-1226. http://dx.doi.org/10.1007/s00531-009-0471-z

WRA. (2019). Catálogo de Riesgo de Proyecto. PIARC. https://www.piarc.org/es/pedido-de-publicacion/30967-es-Cat%C3%A1logo%20de%20riesgos%20de%20proyectos

Downloads

Published

2023-06-22

Issue

Section

Original Articles

How to Cite

Road viaduct in a site of geological - geotechnical complexity. (2023). Journal of Engineering Geology and the Environment, 50, e003. https://doi.org/10.59069/24225703ee003