Polyphenols and their therapeutic effect from Psychoneuroimmunoendocrinology
PDF (Español (España))
HTML (Español (España))

Keywords

polyphenols classification
source of polyphenols
aryl hydrocarbon receptors
flavonoids
therapeutic effect of polyphenols

How to Cite

Serrano Miranda, E. G. (2023). Polyphenols and their therapeutic effect from Psychoneuroimmunoendocrinology. Pinelatinoamericana, 3(3), 203–216. Retrieved from https://revistas.unc.edu.ar/index.php/pinelatam/article/view/43193

Abstract

The environment that surrounds humans and other living beings influences their lifestyle and health. Polyphenols are found in different plants, they can be part of the leaves, flowers, fruits and seeds; they are part of the diet and promote health. They were classified into two groups and six subgroups each, whose common molecular characteristic is phenolic rings. The most studied group is flavonoids. Polyphenols are found in: green tea, black tea, red fruits, celery, onion, cocoa, walnut, Brussels sprouts, broccoli, etc. The objective of this review is to enlight the importance of these chemical compounds, recommending their presence in the daily meals, their participation in the physiological networks related to Psychoneuroimmunoendocrinology, assessing their preventive and therapeutic effect in different diseases. The discussed results showed that its actions begin by binding to its Aryl hydrocarbon receptors, activating complex metabolic processes such as the antioxidant capacity against oxygen and nitrogen free radicals, the interaction with the intestinal microbiota, the regulatory action of the immune response, the induction of the transcription of molecules that inhibit and regulate the inflammatory response, in addition to its effects on slowing aging and helping in antitumor responses. For all this, it was concluded that polyphenols have a beneficial effect on several diseases: autoimmune, liver disease, allergies and different types of cancer. Its performance in cancer has prompted research into the use of nanotechnologies to bring polyphenols closer to the tumor site. Studies will continue to learn more about the functioning and applications of polyphenols.

PDF (Español (España))
HTML (Español (España))

References

Alharris, E., Mohammed, A., Alghetaa, H., Zhou, J., Nagarkatti, M. y Nagarkatti, P. (2022). The Ability of Resveratrol to Attenuate Ovalbumin-Mediated Allergic Asthma Is Associated With Changes in Microbiota Involving the Gut-Lung Axis, Enhanced Barrier Function and Decreased Inflammation in the Lungs. Frontiers in immunology, 13, 805770. https://doi.org/10.3389/fimmu.2022.805770

Anhê, F. F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin, T. V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E. y Marette, A. (2015). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut, 64(6), 872–883. https://doi.org/10.1136/gutjnl-2014-307142

Brockmueller, A., Buhrmann, C., Shayan, P. y Shakibaei, M. (2023). Resveratrol induces apoptosis by modulating the reciprocal crosstalk between p53 and Sirt-1 in the CRC tumor microenvironment. Frontiers in immunology, 14, 1225530. https://doi.org/10.3389/fimmu.2023.1225530

Bungsu, I., Kifli, N., Ahmad, S. R., Ghani, H. y Cunningham, A. C. (2021). Herbal Plants: The Role of AhR in Mediating Immunomodulation. Frontiers in immunology, 12, 697663. https://doi.org/10.3389/fimmu.2021.697663

Cerban, F. M. y Stempin, C. C. (2016). Fagocitosis. Capítulo 7. En L. Pavón Romero, M. C. Jiménez Martínez, M. E. Garcés Alvarez. Inmunología molecular, celular y traslacional. Wolters Kluwer.

Duda-Chodak, A., Tarko, T., Satora, P. y Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European journal of nutrition, 54(3), 325–341. https://doi.org/10.1007/s00394-015-0852-y

Cólica, P. R. (2021). Conductas emocionales y estrés. Pinelatinoamericana, 1(1), 12–17. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/36036

Costantini, C., Bellet, M. M., Renga, G., Stincardini, C., Borghi, M., Pariano, M., Cellini, B., Keller, N., Romani, L. y Zelante, T. (2020). Tryptophan Co-Metabolism at the Host-Pathogen Interface. Frontiers in immunology, 11, 67. https://doi.org/10.3389/fimmu.2020.00067

Eynard, R. A. (2021). Inflamación de “bajo grado” en el Sistema Nervioso y estrés crónico: aspectos celulares y moleculares básicos en su fisiopatología. Pinelatinoamericana. 2021 1(1),3-11. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/35444

Fraga, C. G., Croft, K. D., Kennedy, D. O. y Tomás-Barberán, F. A., (2019). The effects of polyphenols and other bioactives on human health. Food & function, 10(2), 514–528. https://doi.org/10.1039/c8fo01997e

Gasmi, A., Mujawdiya, P. K., Noor, S., Lysiuk, R., Darmohray, R., Piscopo, S., Lenchyk, L., Antonyak, H., Dehtiarova, K., Shanaida, M., Polishchuk, A., Shanaida, V., Peana, M. y Bjørklund, G. (2022). Polyphenols in Metabolic Diseases. Molecules (Basel, Switzerland), 27(19), 6280. https://doi.org/10.3390/molecules27196280

Gutiérrez-Vázquez, C. y Quintana, F. J. (2018). Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity, 48(1), 19–33. https://doi.org/10.1016/j.immuni.2017.12.012

Helm, E. Y., y Zhou, L. (2023). Transcriptional regulation of innate lymphoid cells and T cells by aryl hydrocarbon receptor. Frontiers in immunology, 14, 1056267. https://doi.org/10.3389/fimmu.2023.1056267

Jantan, I., Haque, M. A., Arshad, L., Harikrishnan, H., Septama, A. W. y Mohamed-Hussein, Z. A. (2021). Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. The Journal of nutritional biochemistry, 93, 108634. https://doi.org/10.1016/j.jnutbio.2021.108634

Kuršvietienė, L., Stanevičienė, I., Mongirdienė, A. y Bernatonienė, J. (2016). Multiplicity of effects and health benefits of resveratrol. Medicina (Kaunas, Lithuania), 52(3), 148–155. https://doi.org/10.1016/j.medici.2016.03.003

Lotfi, N., Yousefi, Z., Golabi, M., Khalilian, P., Ghezelbash, B., Montazeri, M., Shams, M. H., Baghbadorani, P. Z. y Eskandari, N. (2023). The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Frontiers in immunology, 14, 1077531. https://doi.org/10.3389/fimmu.2023.1077531

Mikuła-Pietrasik, J., Kuczmarska, A., Rubiś, B., Filas, V., Murias, M., Zieliński, P., Piwocka, K. y Książek, K. (2012). Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free radical biology & medicine, 52(11-12), 2234–2245. https://doi.org/10.1016/j.freeradbiomed.2012.03.014

Panche, A. N., Diwan, A. D. y Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47. https://doi.org/10.1017/jns.2016.41

Rodríguez-Ramiro, I., Ramos, S., López-Oliva, E., Agis-Torres, A., Bravo, L., Goya, L. y Martín, M. A. (2013). Cocoa polyphenols prevent inflammation in the colon of azoxymethane-treated rats and in TNF-α-stimulated Caco-2 cells. The British journal of nutrition, 110(2), 206–215. https://doi.org/10.1017/S0007114512004862

Shinde, A., Deore, G., Navsariwala, K. P., Tabassum, H. y Wani, M. (2022). We are all aging, and here's why. Aging medicine (Milton (N.S.W)), 5(3), 211–231. https://doi.org/10.1002/agm2.12223

Shinde, R., y McGaha, T. L. (2018). The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends in immunology, 39(12), 1005–1020. https://doi.org/10.1016/j.it.2018.10.010

Stockinger, B., Di Meglio, P., Gialitakis, M. y Duarte, J. H. (2014). The aryl hydrocarbon receptor: multitasking in the immune system. Annual review of immunology, 32, 403–432. https://doi.org/10.1146/annurev-immunol-032713-120245

Taleb S. (2019). Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases. Frontiers in immunology, 10, 2113. https://doi.org/10.3389/fimmu.2019.02113

Wang, Q., Yang, B., Wang, N. y Gu, J. (2022). Tumor immunomodulatory effects of polyphenols. Frontiers in immunology, 13, 1041138. https://doi.org/10.3389/fimmu.2022.1041138

Yang, K., Chen, J., Zhang, T., Yuan, X., Ge, A., Wang, S., Xu, H., Zeng, L. y Ge, J. (2022). Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Frontiers in immunology, 13, 949746. https://doi.org/10.3389/fimmu.2022.949746

Zang, M., Xu, S., Maitland-Toolan, K. A., Zuccollo, A., Hou, X., Jiang, B., Wierzbicki, M., Verbeuren, T. J. y Cohen, R. A. (2006). Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes, 55(8), 2180–2191. https://doi.org/10.2337/db05-1188

Zeng, L., Yang, T., Yang, K., Yu, G., Li, J., Xiang, W. y Chen, H. (2022). Curcumin and Curcuma longa Extract in the Treatment of 10 Types of Autoimmune Diseases: A Systematic Review and Meta-Analysis of 31 Randomized Controlled Trials. Frontiers in immunology, 13, 896476. https://doi.org/10.3389/fimmu.2022.896476

Zhang, W., Qi, S., Xue, X., Al Naggar, Y., Wu, L. Wang, K. (2021). Understanding the Gastrointestinal Protective Effects of Polyphenols using Foodomics-Based Approaches. Frontiers in immunology, 12, 671150. https://doi.org/10.3389/fimmu.2021.671150

Zhou L. (2016). AHR Function in Lymphocytes: Emerging Concepts. Trends in immunology, 37(1), 17–31. https://doi.org/10.1016/j.it.2015.11.007

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Pinelatinoamericana

Downloads

Download data is not yet available.