ESTUDIOS DE VARIABILIDAD GENÉTICA EN MAÍZ PISINGALLO (Zea mays L. var. Everta) PARA ASOCIAR VALORES DE MEJORA A MARCADORES MOLECULARES
Palavras-chave:
VARIABILIDAD GENÉTICA, MAÍZ PISINGALLO, MARCADORES MOLECULARESResumo
El objetivo de este trabajo fue evaluar la variabilidad genética de la población de mejoramiento de maíz pisingallo mediante el uso de marcadores moleculares (SNP) e información fenotípica de los caracteres arriba mencionados (expansión y K10), tanto en líneas como híbridos. La información molecular (SNPs) se usará para conocer las distancias genéticas entre los diferentes genotipos y en un futuro asociar marcadores moleculares a ambos caracteres
Referências
Bates, D., Mächler, M., Bolker, B. & Walker, S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
Beckett, T. J., Morales, A. J., Koehler, K. L. & Rocheford, T. R. 2017. Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds. PLoS ONE, 12(12). https://doi.org/10.1371/journal.pone.0189277
Coan, M. M. D., Pinto, R. J. B., Kuki, M. C., Do Amaral Júnior, A. T., Figueiredo, A. S. T., Scapim, C. A. & Warburton, M. 2019. Inheritance study for popping expansion in popcorn vs. Flint corn genotypes. Agronomy Journal, 111(5), 2174–2183. https://doi.org/10.2134/agronj2019.04.0295
Cretors | Concession Equipment & Popcorn Poppers. (n.d.). Retrieved August 5, 2022, from https://www.cretors.com/
De Bernardi, L. A. 2016. Perfil del Maíz Pisingallo. http://www.agroindustria.gob.ar/sitio/areas/ss_mercados_agropecuarios/areas/granos/_archivos/000061_Informes/_899991_Perfil del Maíz Pisingallo.pdf
de Lima, V. J., do Amaral Júnior, A. T., Kamphorst, S. H., Bispo, R. B., Leite, J. T., Santos, T. de O., Schmitt, K. F. M., Chaves, M. M., Oliveira, U. A. de, Santos, P. H. A. D., Gonçalves, G. M. B., Khan, S. & Guimarães, L. J. M. 2019. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy, 9(12). https://doi.org/10.3390/agronomy9120782
Gower, J. C. 1966. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. Biometrika, 53(3/4), 325. https://doi.org/10.2307/2333639
Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. 2018. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources, 18(3), 691–699. https://doi.org/10.1111/1755-0998.12745
Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H., Caig, V., Heller-Uszynska, K., Jaccoud, D., Hopper, C., Aschenbrenner-Kilian, M., Evers, M., Peng, K., Cayla, C., Hok, P. & Uszynski, G. 2012. Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms. Methods in Molecular Biology, 888, 67–89. https://doi.org/10.1007/978-1-61779-870-2_5
Lenth, R. V. 2016. Least-Squares Means: The R Package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01
Parsons, L., Ren, Y., Yobi, A., Hurst, P., Angelovici, R., Rodriguez, O. & Holding, D. R. 2020. Production and Selection of Quality Protein Popcorn Hybrids Using a Novel Ranking System and Combining Ability Estimates. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00698
Pérez, P. & de los Campos, G. 2014. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics, 198(2), 483–495. https://doi.org/10.1534/genetics.114.164442
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Senhorinho, H. J. C., Coan, M. M. D., Marino, T. P., Kuki, M. C., Pinto, R. J. B., Scapim, C. A. & Holland, J. B. 2019. Genomic‐Wide Association Study of Popping Expansion in Tropical Popcorn and Field Corn Germplasm. Crop Science, 59(5). https://doi.org/10.2135/cropsci2019.02.0101
Welcome - Diversity Arrays Technology. (n.d.). 2022. Retrieved July 25, from https://www.diversityarrays.com/
White, M. R., Mikel, M. A., de Leon, N. & Kaeppler, S. M. 2020. Diversity and heterotic patterns in North American proprietary dent maize germplasm. Crop Science, 60(1), 100–114. https://doi.org/10.1002/csc2.20050
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Yutani, H. 2019. Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Woodhouse, M. R., Cannon, E. K., Portwood, J. L., Harper, L. C., Gardiner, J. M., Schaeffer, M. L. & Andorf, C. M. 2021. A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biology, 21(1), 385. https://doi.org/10.1186/s12870-021-03173-5
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 E. C. Alessandri, G. Schrauf, A. N. Andrés, G. Eyherabide, M. F. Schrauf, C. E. Shaw
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribución – No Comercial – Compartir Igual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.