EFFECTS OF COMBINED STRESS OF HIGH TEMPERATURE AND WATER DEFICIENCY ON FEMALE AND MALE FLOWERING AND KERNEL NUMBER IN MAIZE.
Keywords:
NG, hydric stress, subtropical hybrid, water deficiency, pollen, flowersAbstract
Extremely high temperatures and water deficits commonly affect crop productivity worldwide (Prasad et al., 2008; Lobell et al., 2013). The frequency of these events may increase as a result of global warming (Rezaei et al., 2015; IPCC, 2023; Heino et al., 2023) impacting to a greater extent in low latitudes with high probability of heat stress during crop growth and development (Easterling et al., 1997). Feng et al. (2020), in a global analysis, determined that Argentina is among the seven producing countries with the highest probability of occurrence of events with high temperatures and water deficit. Thus, the increase in the frequency and magnitude of heat stress (TS) due to high temperature and water deficit (DH) are among the main abiotic constraints with considerable adverse effects on maize yield (Lobell and Field, 2007; Hatfield et al., 2011). The number of grains (NG) is the component that explains most of the variations in maize yield (Tollenaar et al., 1992). The most critical time for NG determination in maize is around flowering (e.g., Tollenaar et al., 1992; Carrera et al., 2023). In particular, it was shown that the effects of ET on NG reduction were greatest between stigma emission and 15-17 days after stigma emission (Rattalino Edreira and Otegui, 2013; Neiff et al., 2016; Shim et al., 2017), coinciding with the period of maximum susceptibility to DH (Ouattar et al., 1987). Both the occurrence of ET or DH often result in the lag between the anthesis-stigmas interval (Cairns et al., 2013; Trachsel et al., 2016; Wang et al. 2019), leading to NG declines. Episodes of ET often reduce the pollen release period (PLP) and its daily production (Wang, 2019), as well as the % of viable pollen grains (Alam et al., 2017).
References
Alam MA, Seetharam K, Zaidi PH, et al (2017) Field Crops Research. https://doi.org/10.1016/j.fcr.2017.01.006
Andrade FH, Echarte L, Rizzalli R, et al (2002) Crop Science. https://doi.org/10.2135/cropsci2002.1173
Bassetti, P., & Westgate, M. E. (1993). Crop Science https://doi.org/10.2135/cropsci1993.0011183X003300020011x
Cairns JE, Crossa J, Zaidi PH, et al (2013) Crop Science https://doi.org/10.2135/cropsci2012.09.0545
Cárcova, J., Uribelarrea, M., Borrás, L., Otegui, M. E., & Westgate, M. E. (2000). https://doi.org/10.2135/cropsci2000.4041056x
Carrera, C. S., Savin, R., & Slafer, G. A. (2023). Trends in Plant Science. https://doi.org/10.1016/j.tplants.2023.08.012
Cicchino M, Edreira JIR, Otegui ME (2010a) Crop Science https://doi.org/10.2135/cropsci2009.07.0400
Commuri, P. D., & Jones, R. J. (2001). Crop Science. https://doi.org/10.2135/cropsci2001.4141122x
Easterling DR, Horton B, Jones PD, et al (1997) Science https://doi.org/10.1126/science.277.5324.364
Feng, S., & Hao, Z. (2020). Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135250
Fonseca, A. E., & Westgate, M. E. (2005). Field crops research. https://doi.org/10.1016/j.fcr.2004.12.001
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., & Wolfe, D. (2011). Agronomy journal. https://doi.org/10.2134/agronj2010.0303
Heino, M., Kinnunen, P., Anderson, W., Ray, D. K., Puma, M. J., Varis, O., & Kummu, M. (2023). Scientific Reports. https://doi.org/10.1038/s41598-023-29378-2
Herrero, M. P., & Johnson, R. R. (1980). Crop science. https://doi.org/10.2135/cropsci1980.0011183X002000060030x
Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., & Wang, L. (2019). Scientific reports. https://doi.org/10.1038/s41598-019-40362-7
IPCC Climate Change: Summary for Policymakers. In: Climate Change (2023): Synthesis Report.
Iqbal, M., Ul-Allah, S., Naeem, M., Ijaz, M., Sattar, A., & Sher, A. (2017). Euphytica. https://doi.org/10.1007/s10681-017-1916-2
Liu, X., Wang, X., Wang, X., Gao, J., Luo, N., Meng, Q., & Wang, P. (2020). Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2020.104213
Lobell, D. B., & Field, C. B. 2007. Environmental research letters. 10.1088/1748-9326/2/1/014002
Lobell DB, Hammer GL, McLean G, et al (2013) Nature Climate Change https://doi.org/10.1038/nclimate1832
Martins, E. S., Davide, L. M. C., Miranda, G. J., Barizon, J. D. O., Souza, F. D. A., Carvalho, R. P. D., & Gonçalves, M. C. (2016). Ciencia Rural. https://doi.org/10.1088/1748-9326/2/1/014002
Mayer, L. I., Savin, R., & Maddonni, G. A. (2016). Crop Science. https://doi.org/10.2135/cropsci2015.09.0537
McLaughlin, J. E. & Boyer, J. S. (2004). Annals of Botany. https://doi.org/10.1093/aob/mch193
Meseka, S., Menkir, A., Bossey, B., & Mengesha, W. (2018). Agronomy. https://doi.org/10.3390/agronomy8120274
Mittler, R. (2006). Trends in plant science. https://doi.org/10.1016/j.tplants.2005.11.002
Nagore, M. L., Della Maggiora, A., Andrade, F. H., & Echarte, L. (2017). Field Crops Research. https://doi.org/10.1016/j.fcr.2017.09.013
Neiff N, Dhliwayo T, Suarez EA, et al (2015) Journal of Crop Improvement. https://doi.org/10.1080/15427528.2015.1073643
Neiff N, Trachsel S, Valentinuz OR, et al (2016) Crop Science https://doi.org/10.2135/cropsci2015.12.0755
Nelimor, C., Badu-Apraku, B., Tetteh, A. Y., & N’guetta, A. S. (2019). Plants. https://doi.org/10.3390/plants8110518
Otegui, M. E., Andrade, F. H. & Suero, E. E. (1995). Field Crops. https://doi.org/10.1016/0378-4290(94)00093-R
Ouattar, S., Jones, R. J. & Crookston, R. K. (1987). Crop Science. https://doi.org/10.1016/0378-4290(94)00093-R
Parco, M., D’ Andrea, K. E. & Maddonni, G. Á. (2022). Field Crops Research. https://doi.org/10.1016/j.fcr.2022.108553
Prasad PVV, Staggenborg SA, Ristic Z, et al (2008) In: Adv. in Agr. Sys. Modeling. American Society of Agronomy, CSSA, SSSA.
Rattalino Edreira, J. I., Budakli Carpici, E., Sammarro, D. & Otegui, M. E. (2011). Field Crops https://doi.org/10.1016/j.fcr.2011.04.015
Rattalino Edreira, J. I., & Otegui, M. E. (2012). Field Crops. https://doi.org/10.1016/j.fcr.2012.02.009
Rattalino Edreira, J. I., & Otegui, M. E. (2013). Field Crops. https://doi.org/10.1016/j.fcr.2012.11.009
Rezaei, E. E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). European Journal of Agronomy. https://doi.org/10.1016/j.eja.2014.10.003
Ritchie, S. W., Hanway, J. J., Benson, G. O., Herman, J. C., & Lupkes, S. J. (1993). State Univ. Coop. Ext. Serv., Ames. 3. https://doi.org/10.1104/pp.104.900138
Rossini, M. A., Hisse, I. R., Otegui, M. E., & D ́ Andrea, K. E. (2020). Crop Science. https://doi.org/10.1002/csc2.20123
Schoper, J. B., Lambert, R. J., & Vasilas, B. L. (1987). Crop science. https://doi.org/10.2135/cropsci1987.0011183X002700010007x
Shim, D., Lee, K. J., & Lee, B. W. (2017). The Crop Journal. https://doi.org/10.1016/j.cj.2017.01.004
Sinclair, T. R., Bennett, J. M. & Muchow, R. C. (1990). Crop Science. https://doi.org/10.2135/cropsci1990.0011183X003000030043x
Trachsel S, Sun D, SanVicente FM, et al (2016) PLOS ONE 11:e0149636. https://doi.org/10.1371/journal.pone.0149636
Tollenaar, M., Dwyer, L. M., & Stewart, D. W. (1992). Crop Science. https://doi.org/10.2135/cropsci1992.0011183X003200020030x
Wang, Y., Tao, H., Tian, B., Sheng, D., Xu, C., Zhou, H., Shoubing, H., & Wang, P. (2019). Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2018.11.007
Westgate, M. E., & Boyer, J. S. (1986). Crop Science. https://doi.org/10.2135/cropsci1986.0011183X002600050023x
Downloads
Published
Issue
Section
License
Copyright (c) 2024 S. Boscarino, N. Neiff, Y. Namtz, F. D. Nalli Sonzogni, B. A. Kettler, L. Echarte
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Attribution - Non-Commercial - Share Alike (by-nc-sa): No commercial use of the original work or any derivative works is permitted, distribution of which must be under a license equal to that governing the original work.