EFFECTS OF COMBINED STRESS OF HIGH TEMPERATURE AND WATER DEFICIENCY ON FEMALE AND MALE FLOWERING AND KERNEL NUMBER IN MAIZE.

Authors

  • S. Boscarino Centro de Ecofisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA- UNNE), Corrientes, Argentina.
  • N. Neiff Centro de Ecofisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA- UNNE), Corrientes, Argentina.
  • Y. Namtz Centro de Ecofisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA- UNNE), Corrientes, Argentina.
  • F. D. Nalli Sonzogni Centro de Ecofisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA- UNNE), Corrientes, Argentina.
  • B. A. Kettler Centro de Ecofisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA- UNNE), Corrientes, Argentina.
  • L. Echarte Consejo de Investigaciones Científicas y Técnicas (CONICET).

Keywords:

NG, hydric stress, subtropical hybrid, water deficiency, pollen, flowers

Abstract

Extremely high temperatures and water deficits commonly affect crop productivity worldwide (Prasad et al., 2008; Lobell et al., 2013). The frequency of these events may increase as a result of global warming (Rezaei et al., 2015; IPCC, 2023; Heino et al., 2023) impacting to a greater extent in low latitudes with high probability of heat stress during crop growth and development (Easterling et al., 1997). Feng et al. (2020), in a global analysis, determined that Argentina is among the seven producing countries with the highest probability of occurrence of events with high temperatures and water deficit. Thus, the increase in the frequency and magnitude of heat stress (TS) due to high temperature and water deficit (DH) are among the main abiotic constraints with considerable adverse effects on maize yield (Lobell and Field, 2007; Hatfield et al., 2011). The number of grains (NG) is the component that explains most of the variations in maize yield (Tollenaar et al., 1992). The most critical time for NG determination in maize is around flowering (e.g., Tollenaar et al., 1992; Carrera et al., 2023). In particular, it was shown that the effects of ET on NG reduction were greatest between stigma emission and 15-17 days after stigma emission (Rattalino Edreira and Otegui, 2013; Neiff et al., 2016; Shim et al., 2017), coinciding with the period of maximum susceptibility to DH (Ouattar et al., 1987). Both the occurrence of ET or DH often result in the lag between the anthesis-stigmas interval (Cairns et al., 2013; Trachsel et al., 2016; Wang et al. 2019), leading to NG declines. Episodes of ET often reduce the pollen release period (PLP) and its daily production (Wang, 2019), as well as the % of viable pollen grains (Alam et al., 2017).

References

Alam MA, Seetharam K, Zaidi PH, et al (2017) Field Crops Research. https://doi.org/10.1016/j.fcr.2017.01.006

Andrade FH, Echarte L, Rizzalli R, et al (2002) Crop Science. https://doi.org/10.2135/cropsci2002.1173

Bassetti, P., & Westgate, M. E. (1993). Crop Science https://doi.org/10.2135/cropsci1993.0011183X003300020011x

Cairns JE, Crossa J, Zaidi PH, et al (2013) Crop Science https://doi.org/10.2135/cropsci2012.09.0545

Cárcova, J., Uribelarrea, M., Borrás, L., Otegui, M. E., & Westgate, M. E. (2000). https://doi.org/10.2135/cropsci2000.4041056x

Carrera, C. S., Savin, R., & Slafer, G. A. (2023). Trends in Plant Science. https://doi.org/10.1016/j.tplants.2023.08.012

Cicchino M, Edreira JIR, Otegui ME (2010a) Crop Science https://doi.org/10.2135/cropsci2009.07.0400

Commuri, P. D., & Jones, R. J. (2001). Crop Science. https://doi.org/10.2135/cropsci2001.4141122x

Easterling DR, Horton B, Jones PD, et al (1997) Science https://doi.org/10.1126/science.277.5324.364

Feng, S., & Hao, Z. (2020). Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135250

Fonseca, A. E., & Westgate, M. E. (2005). Field crops research. https://doi.org/10.1016/j.fcr.2004.12.001

Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., & Wolfe, D. (2011). Agronomy journal. https://doi.org/10.2134/agronj2010.0303

Heino, M., Kinnunen, P., Anderson, W., Ray, D. K., Puma, M. J., Varis, O., & Kummu, M. (2023). Scientific Reports. https://doi.org/10.1038/s41598-023-29378-2

Herrero, M. P., & Johnson, R. R. (1980). Crop science. https://doi.org/10.2135/cropsci1980.0011183X002000060030x

Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., & Wang, L. (2019). Scientific reports. https://doi.org/10.1038/s41598-019-40362-7

IPCC Climate Change: Summary for Policymakers. In: Climate Change (2023): Synthesis Report.

Iqbal, M., Ul-Allah, S., Naeem, M., Ijaz, M., Sattar, A., & Sher, A. (2017). Euphytica. https://doi.org/10.1007/s10681-017-1916-2

Liu, X., Wang, X., Wang, X., Gao, J., Luo, N., Meng, Q., & Wang, P. (2020). Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2020.104213

Lobell, D. B., & Field, C. B. 2007. Environmental research letters. 10.1088/1748-9326/2/1/014002

Lobell DB, Hammer GL, McLean G, et al (2013) Nature Climate Change https://doi.org/10.1038/nclimate1832

Martins, E. S., Davide, L. M. C., Miranda, G. J., Barizon, J. D. O., Souza, F. D. A., Carvalho, R. P. D., & Gonçalves, M. C. (2016). Ciencia Rural. https://doi.org/10.1088/1748-9326/2/1/014002

Mayer, L. I., Savin, R., & Maddonni, G. A. (2016). Crop Science. https://doi.org/10.2135/cropsci2015.09.0537

McLaughlin, J. E. & Boyer, J. S. (2004). Annals of Botany. https://doi.org/10.1093/aob/mch193

Meseka, S., Menkir, A., Bossey, B., & Mengesha, W. (2018). Agronomy. https://doi.org/10.3390/agronomy8120274

Mittler, R. (2006). Trends in plant science. https://doi.org/10.1016/j.tplants.2005.11.002

Nagore, M. L., Della Maggiora, A., Andrade, F. H., & Echarte, L. (2017). Field Crops Research. https://doi.org/10.1016/j.fcr.2017.09.013

Neiff N, Dhliwayo T, Suarez EA, et al (2015) Journal of Crop Improvement. https://doi.org/10.1080/15427528.2015.1073643

Neiff N, Trachsel S, Valentinuz OR, et al (2016) Crop Science https://doi.org/10.2135/cropsci2015.12.0755

Nelimor, C., Badu-Apraku, B., Tetteh, A. Y., & N’guetta, A. S. (2019). Plants. https://doi.org/10.3390/plants8110518

Otegui, M. E., Andrade, F. H. & Suero, E. E. (1995). Field Crops. https://doi.org/10.1016/0378-4290(94)00093-R

Ouattar, S., Jones, R. J. & Crookston, R. K. (1987). Crop Science. https://doi.org/10.1016/0378-4290(94)00093-R

Parco, M., D’ Andrea, K. E. & Maddonni, G. Á. (2022). Field Crops Research. https://doi.org/10.1016/j.fcr.2022.108553

Prasad PVV, Staggenborg SA, Ristic Z, et al (2008) In: Adv. in Agr. Sys. Modeling. American Society of Agronomy, CSSA, SSSA.

Rattalino Edreira, J. I., Budakli Carpici, E., Sammarro, D. & Otegui, M. E. (2011). Field Crops https://doi.org/10.1016/j.fcr.2011.04.015

Rattalino Edreira, J. I., & Otegui, M. E. (2012). Field Crops. https://doi.org/10.1016/j.fcr.2012.02.009

Rattalino Edreira, J. I., & Otegui, M. E. (2013). Field Crops. https://doi.org/10.1016/j.fcr.2012.11.009

Rezaei, E. E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). European Journal of Agronomy. https://doi.org/10.1016/j.eja.2014.10.003

Ritchie, S. W., Hanway, J. J., Benson, G. O., Herman, J. C., & Lupkes, S. J. (1993). State Univ. Coop. Ext. Serv., Ames. 3. https://doi.org/10.1104/pp.104.900138

Rossini, M. A., Hisse, I. R., Otegui, M. E., & D ́ Andrea, K. E. (2020). Crop Science. https://doi.org/10.1002/csc2.20123

Schoper, J. B., Lambert, R. J., & Vasilas, B. L. (1987). Crop science. https://doi.org/10.2135/cropsci1987.0011183X002700010007x

Shim, D., Lee, K. J., & Lee, B. W. (2017). The Crop Journal. https://doi.org/10.1016/j.cj.2017.01.004

Sinclair, T. R., Bennett, J. M. & Muchow, R. C. (1990). Crop Science. https://doi.org/10.2135/cropsci1990.0011183X003000030043x

Trachsel S, Sun D, SanVicente FM, et al (2016) PLOS ONE 11:e0149636. https://doi.org/10.1371/journal.pone.0149636

Tollenaar, M., Dwyer, L. M., & Stewart, D. W. (1992). Crop Science. https://doi.org/10.2135/cropsci1992.0011183X003200020030x

Wang, Y., Tao, H., Tian, B., Sheng, D., Xu, C., Zhou, H., Shoubing, H., & Wang, P. (2019). Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2018.11.007

Westgate, M. E., & Boyer, J. S. (1986). Crop Science. https://doi.org/10.2135/cropsci1986.0011183X002600050023x

Downloads

Published

2024-05-28

How to Cite

EFFECTS OF COMBINED STRESS OF HIGH TEMPERATURE AND WATER DEFICIENCY ON FEMALE AND MALE FLOWERING AND KERNEL NUMBER IN MAIZE. (2024). Nexo Agropecuario, Edición Especial, 7-12. https://revistas.unc.edu.ar/index.php/nexoagro/article/view/45134